How to Find Complex Roots of the Quadratic Equation?
Complex roots are the imaginary root of quadratic or polynomial functions. In the following guide, you learn how to find complex roots of the quadratic equation.

The complex roots are a form of complex numbers and are represented as \(α = a + ib\), and \(β = c + id\). The quadratic equation having a discriminant value lesser than zero \((D<0)\) has imaginary roots, which are represented as complex numbers.
Related Topics
Step-by-step guide to complex roots of the quadratic equation
Complex roots are the imaginary roots of quadratic equations that are represented as complex numbers. The square root of a negative number is not possible and hence we convert it to a complex number. The quadratic equations having discriminant values lesser than zero \(b^2-4ac<0\), converted by the use \(i^2=-1\), to obtain the complex roots. Here \(-D\) is written as \(i^2D\).
Complex roots are expressed as complex numbers \(a±ib\). The complex root consists of a real part and an imaginary party. Complex roots are often shown as \(Z=a+ib\). Here \(a\) is the real part of the complex number denoted by Re \((Z)\) and \(b\) is the imaginary part denoted by I’m \((Z)\). And \(ib\) is the imaginary number.
Note: \(i^2= -1\), and the negative number \(-N\) is represented as \(i^2N\), and it has now transformed into a positive number.
Complex Roots of the Quadratic Equation – Example 1:
Find the complex roots of the quadratic equation \(x^2+3x+4=0\).
Solution:
The roots of the quadratic equation \(ax^2+bx+c=0\) is equal to \(\frac{-b\pm \sqrt{b^2-4ac}}{2a}\)
Here \(a=1, b=3,c=4\). Applying this to the formula we have the roots as follows:
\(x_{1,2}=\frac{-3\pm \sqrt{3^2-4\times 1\times 4}}{2\times 1}\)
\(x_{1,2}=\frac{-3\pm \sqrt{9-16}}{2}\)
\(x_{1,2}=\frac{-3\pm \sqrt{-7}}{2}\)
\(x_{1,2}=\frac{-3\pm i\sqrt{7}}{2}\)
Thus the two complex roots of the quadratic equation are:
\(x=\frac{-3+i\sqrt{7}}{2}\) and \(x=\frac{-3-i\sqrt{7}}{2}\)
Exercises for Complex Roots of the Quadratic Equation
Find the complex roots of the quadratic equation.
- \(\color{blue}{x^2-6x+13=0}\)
- \(\color{blue}{3x^2-10x+15=0}\)
- \(\color{blue}{x^2+4x+5=0}\)
- \(\color{blue}{x^2-3x+10=0}\)

- \(\color{blue}{x=3+2i, x=3-2i}\)
- \(\color{blue}{x=\frac{5}{3}+\frac{2\sqrt{5}}{3}i,\:x=\frac{5}{3}-\frac{2\sqrt{5}}{3}i}\)
- \(\color{blue}{x=-2+i, x=-2-i}\)
- \(\color{blue}{x=\frac{3}{2}+\frac{\sqrt{31}}{2}i,\:x=\frac{3}{2}-\frac{\sqrt{31}}{2}i}\)
More math articles
- 5th Grade MEA Math Worksheets: FREE & Printable
- Praxis Math Formulas
- 4 Reasons To Fall In Love With Math
- Overview of the TASC Mathematics Test
- How to Calculate and Interpret Correlation Coefficients
- What Kind of Math Is on the HSPT Test?
- Pre-Algebra Practice Test Questions
- 8th Grade NHSAS Math Worksheets: FREE & Printable
- Top 10 Tips to Retake GED Math Test
- FREE 5th Grade MEAP Math Practice Test
What people say about "How to Find Complex Roots of the Quadratic Equation?"?
No one replied yet.