Solving a Quadratic Equation

Solving a Quadratic Equation

Learn how to simplify and solve a Quadratic Equation in few simple and easy steps.

Step by step guide to Solving a Quadratic Equation

  1. Write the equation in the form of: \(ax^2+bx+c=0\)
  2. Factorize the quadratic and solve for the variable.
  3. Use quadratic formula if you couldn’t factorize the quadratic.
  4. Quadratic formula: \( \color{blue}{x=\frac{-b±\sqrt{b^2-4ac}}{2a}}\)

Example 1:

Find the solutions of each quadratic. \(x^2+7x+10=0\)

Answer:

\(x^2+7x+10=0\)

You can use factorization method. \(x^2+7x+10=0\)

\((x+5)(x+2)=0\)
Then: \((x=-5)\) and \((x=-2)\)
You can also use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=7\) and \(c=10\)
\(x=\frac{-7±\sqrt{7^2-4.1.10}}{2.1} , x_{1}=\frac{-7+\sqrt{7^2-4.1.10}}{2.1}=-2 , x_{2}=\frac{-7-\sqrt{7^2-4.1.10}}{2.1}=-5\)

Example 2:

Find the solutions of each quadratic. \(x^2+4x+3=0\)

Answer:

Use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=4\) and \(c=3 \)
then: \(x=\frac{-4±\sqrt{4^2-4.1(3)}}{2(1)} , x_{1}=\frac{-4+\sqrt{4^2-4.1(3)}}{2(1)}=-1 , x_{2}=\frac{-4-\sqrt{4^2-4.1(3)}}{2(1))}= \ -3\)

Example 3:

Find the solutions of each quadratic. \(x^2+5x-6\)

Answer:

Use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=5\) and \(c=-6\)
then: \(x=\frac{-5±\sqrt{5^2-4.1(-6)}}{2(1)} , x_{1}=\frac{-5+\sqrt{5^2-4.1(-6)}}{2(1)}=1 , x_{2}=\frac{-5-\sqrt{4^2-4.1(-6)}}{2(1))}= -6\)

Example 4:

Find the solutions of each quadratic. \(x^2+6x+8\)

Answer:

Use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=6\) and \(c=8\)
then: \(x=\frac{-6±\sqrt{6^2-4.1(8)}}{2(1)} , x_{1}=\frac{-6+\sqrt{6^2-4.1(8)}}{2(1)}= -2 , x_{2}=\frac{-6-\sqrt{6^2-4.1(8)}}{2(1))}= -4\)

Exercises

Solve each equation.

  • \(\color{blue}{x^2-5x-14=0}\)
  • \(\color{blue}{x^2+8x+15=0}\)
  • \(\color{blue}{x^2-5x-36=0}\)
  • \(\color{blue}{x^2-12x-35=0}\)
  • \(\color{blue}{x^2+12x+32=0}\)
  • \(\color{blue}{5x^2+27x+28=0}\)

Download Solving a Quadratic Equation Worksheet

  • \(\color{blue}{x=-2,x=7}\)
  • \(\color{blue}{x=-3,x=-5}\)
  • \(\color{blue}{x=9,x=-4}\)
  • \(\color{blue}{x=7,x=5}\)
  • \(\color{blue}{x=-4,x=-8}\)
  • \(\color{blue}{x=-\frac{7}{5},x=-4}\)

Related to "Solving a Quadratic Equation"

Top 10 Grade 4 Common Core Math Practice Questions
Top 10 Grade 4 Common Core Math Practice Questions
Grade 8 ACT Aspire Math Worksheets
Grade 8 ACT Aspire Math Worksheets
Top 10 Grade 4 STAAR Math Practice Questions
Top 10 Grade 4 STAAR Math Practice Questions
Grade 8 MEAP Math Worksheets
Grade 8 MEAP Math Worksheets
Top 10 Grade 8 STAAR Math Practice Questions
Top 10 Grade 8 STAAR Math Practice Questions
Grade 8 MAP Math Worksheets
Grade 8 MAP Math Worksheets
Top 10 ALEKS Math Practice Questions
Top 10 ALEKS Math Practice Questions
Grade 8 NYSE Math Worksheets
Grade 8 NYSE Math Worksheets
Top 10 ATI TEAS 6 Math Practice Questions
Top 10 ATI TEAS 6 Math Practice Questions
Grade 8 OST Math Worksheets
Grade 8 OST Math Worksheets

Leave a Reply

Your email address will not be published. Required fields are marked *