Learn how to simplify and solve a Quadratic Equation in few simple and easy steps.
Step by step guide to Solving a Quadratic Equation
- Write the equation in the form of: \(ax^2+bx+c=0\)
- Factorize the quadratic and solve for the variable.
- Use quadratic formula if you couldn’t factorize the quadratic.
- Quadratic formula: \( \color{blue}{x=\frac{-b±\sqrt{b^2-4ac}}{2a}}\)
Solving a Quadratic Equation – Example 1:
Find the solutions of each quadratic. \(x^2+7x+10=0\)
Answer:
\(x^2+7x+10=0\)
You can use factorization method. \(x^2+7x+10=0\)
\((x+5)(x+2)=0\)
Then: \((x=-5)\) and \((x=-2)\)
You can also use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=7\) and \(c=10\)
\(x=\frac{-7±\sqrt{7^2-4.1.10}}{2.1} , x_{1}=\frac{-7+\sqrt{7^2-4.1.10}}{2.1}=-2 , x_{2}=\frac{-7-\sqrt{7^2-4.1.10}}{2.1}=-5\)
Solving a Quadratic Equation – Example 2:
Find the solutions of each quadratic. \(x^2+4x+3=0\)
Answer:
Use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=4\) and \(c=3 \)
then: \(x=\frac{-4±\sqrt{4^2-4.1(3)}}{2(1)} , x_{1}=\frac{-4+\sqrt{4^2-4.1(3)}}{2(1)}=-1 , x_{2}=\frac{-4-\sqrt{4^2-4.1(3)}}{2(1))}= \ -3\)
Solving a Quadratic Equation – Example 3:
Find the solutions of each quadratic. \(x^2+5x-6\)
Answer:
Use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=5\) and \(c=-6\)
then: \(x=\frac{-5±\sqrt{5^2-4.1(-6)}}{2(1)} , x_{1}=\frac{-5+\sqrt{5^2-4.1(-6)}}{2(1)}=1 , x_{2}=\frac{-5-\sqrt{4^2-4.1(-6)}}{2(1))}= -6\)
Solving a Quadratic Equation – Example 4:
Find the solutions of each quadratic. \(x^2+6x+8\)
Answer:
Use quadratic formula: \(=\frac{-b±\sqrt{b^2-4ac}}{2a} , a=1,b=6\) and \(c=8\)
then: \(x=\frac{-6±\sqrt{6^2-4.1(8)}}{2(1)} , x_{1}=\frac{-6+\sqrt{6^2-4.1(8)}}{2(1)}= -2 , x_{2}=\frac{-6-\sqrt{6^2-4.1(8)}}{2(1))}= -4\)
Exercises for Solving a Quadratic Equation
Solve each equation.
- \(\color{blue}{x^2-5x-14=0}\)
- \(\color{blue}{x^2+8x+15=0}\)
- \(\color{blue}{x^2-5x-36=0}\)
- \(\color{blue}{x^2-12x-35=0}\)
- \(\color{blue}{x^2+12x+32=0}\)
- \(\color{blue}{5x^2+27x+28=0}\)
Download Solving a Quadratic Equation Worksheet

- \(\color{blue}{x=-2,x=7}\)
- \(\color{blue}{x=-3,x=-5}\)
- \(\color{blue}{x=9,x=-4}\)
- \(\color{blue}{x=7,x=5}\)
- \(\color{blue}{x=-4,x=-8}\)
- \(\color{blue}{x=-\frac{7}{5},x=-4}\)