How to Solve Negative Exponents and Negative Bases? (+FREE Worksheet!)

Learn how to solve math problems containing negative exponents and negative bases.

How to Solve Negative Exponents and Negative Bases? (+FREE Worksheet!)

Related Topics

Step by step guide to solve negative exponents and negative bases problems

  • Make the power positive. A negative exponent is the reciprocal of that number with a positive exponent.
  • The parenthesis is important! \(-5^{ \ -2}\) is not the same as \((– 5)^{ \ -2}\)
    \(– 5^{ \ -2}= -\frac{1}{5^2} \) and \((–5)^{ \ -2}=+\frac{1}{5^2}\)

Negative Exponents and Negative Bases – Example 1:

Simplify. \((\frac{5a}{6c})^{ \ -2}=\)

Solution:

Use Exponent’s rules: \(\color{blue}{(\frac{x^a}{x^b})^{-n} = (\frac{x^b}{x^a})^{n}} → {(\frac{5a}{6c})^{ \ -2} = (\frac{6c}{5a})^{2}= \frac{(6c)^2}{(5a)^2} = \frac{6^2 c^2}{5^2a^2}= \frac{36 c^2}{25a^2} }\)

Negative Exponents and Negative Bases – Example 2:

Simplify. \((\frac{2x}{3yz})^{ \ -3}=\)

Solution:

Use Exponent’s rules: \(\color{blue}{(\frac{x^a}{x^b})^{-n} = (\frac{x^b}{x^a})^{n}} → {(\frac{2x}{3yz})^{ \ -3} = (\frac{3yz}{2x})^{3}= \frac{(3yz)^3}{(2x)^3} = \frac{3^3 y^3z^3}{2^3x^3}= \frac{27 y^3z^3}{8x^3} }\)

Negative Exponents and Negative Bases – Example 3:

Simplify. \((\frac{3a}{2c})^{-2}=\)

Solution:

Use Exponent’s rules: \(\color{blue}{(\frac{x^a}{x^b})^{-n} = (\frac{x^b}{x^a})^{n}} → {(\frac{3a}{2c})^{ \ -2} = (\frac{2c}{3a})^{2}= \frac{(2c)^2}{(3a)^2} = \frac{2^2 c^2}{3^2a^2}= \frac{4 c^2}{9a^2} }\)

Negative Exponents and Negative Bases – Example 4:

Simplify. \((-\frac{5x}{3yz})^{-3}=\)

Solution:

Use Exponent’s rules: \(\color{blue}{\frac{1}{x^b} =x^{-b}} →(-\frac{5x}{3yz})^{-3}= \frac{ 1}{(-\frac{5x}{3yz})^3} = \frac{ 1}{-\frac{5^3 x^3}{3^3 y^3 z^3} }\)
Now use fraction rule: \(\color{blue}{\frac{1}{(\frac{b}{c})}=\frac{c}{b }} → \frac{ 1}{-\frac{ 5^3 x^3 }{ 3^3 y^3 z^3 } } = -\frac{ 3^3 y^3 z^3 }{ 5^3 x^3 }\)
Then: \( -\frac{ 27 y^3 z^3}{125x^3}\)

Exercises for Solveing Negative Exponents and Negative Bases

Simplify.

  1. \(\color{blue}{\frac{4ab^{-2}}{-3c^{-2}} } \\\ \)
  2. \(\color{blue}{– 12x^2y^{-3} } \\\ \)
  3. \(\color{blue}{(– \frac{1}{3})^{–2}} \\\ \)
  4. \(\color{blue}{(– \frac{3}{4})^{–2}} \\\ \)
  5. \(\color{blue}{(\frac{5x}{4y})^{–2}} \\\ \)
  6. \(\color{blue}{(– \frac{5x}{3yz})^{–3}} \\\ \)

Download Negative Exponents and Negative Bases Worksheet

  1. \(\color{blue}{– \frac{4ac^2}{3b^2} } \\\ \)
  2. \(\color{blue}{– \frac{12x^2}{y^3 }} \\\ \)
  3. \(\color{blue}{9} \\\ \)
  4. \(\color{blue}{\frac{16}{9}} \\\ \)
  5. \(\color{blue}{\frac{16y^2}{25x^2 }} \\\ \)
  6. \(\color{blue}{– \frac{27y^3 z^3}{125x^3 }} \\\ \)

What people say about "How to Solve Negative Exponents and Negative Bases? (+FREE Worksheet!)"?

No one replied yet.

Leave a Reply

X
30% OFF

Limited time only!

Save Over 30%

Take It Now!

SAVE $5

It was $16.99 now it is $11.99

Math and Critical Thinking Challenges: For the Middle and High School Student