# Cylinder In this blog post, you learn how to find the volume and surface area of cylinders by using volume and surface area formula.

## Step by step guide to calculating Cylinders volume and surface area

• A cylinder is a solid geometric figure with straight parallel sides and a circular or oval cross section.
• Volume of Cylinder Formula $$= π$$ (radius)$$^2 ×$$ height, $$π = 3.14$$
• The surface area of a cylinder $$=2πr^2+2πrh$$ ### Example 1:

Find the volume and Surface area of the follow Cylinder. Solution:

Use volume formula: Volume $$= π$$ (radius)$$^2 ×$$ height,
Then: Volume $$=π(2)^2×8= 4π×8=32π$$
$$π=3.14$$ then: Volume $$=32π=32 × 3.14 = 100.48$$ cm$$^3$$
Use surface area formula: Surface area $$=2πr^2+2πrh$$
Then: $$=2π(2)^2+2π(2)(8)=2π(4)+2π(16)=8π+32π=40π$$
$$π=3.14$$ then: Surface area $$=40×3.14=125.6$$ cm$$^2$$

### Example 2:

Find the volume and Surface area of the follow Cylinder. Solution:

Use volume formula: Volume $$= π$$ (radius)$$^2 ×$$ height,
Then: Volume $$=π(4)^2×6= π16×6=96π$$
$$π=3.14$$ then: Volume $$=96π=301.44$$ cm$$^3$$
Use surface area formula: Surface area $$=2πr^2+2πrh$$
Then: $$=2π(4)^2+2π(4)(6)=2π(16)+2π(24)=32π+48π=80π$$
$$π=3.14$$ then: Surface area $$=80×3.14=251.2$$ cm$$^2$$

## Exercises

### Find the volume of each Cylinder. Round your answer to the nearest tenth. $$(\pi=3.14)$$

1. 2. 3. 1. $$\color{blue}{75.36 \ m^3}$$
2. $$\color{blue}{1,130.4 \ m^3}$$
3. $$\color{blue}{1,808.64 \ m^3}$$ 