# How to Calculate Cylinder Volume and Surface Area In this blog post, you learn how to find the volume and surface area of cylinders by using volume and surface area formula.

## Step by step guide to calculating Cylinders volume and surface area

• A cylinder is a solid geometric figure with straight parallel sides and a circular or oval cross section.
• Volume of Cylinder Formula $$= π$$ (radius)$$^2 ×$$ height, $$π = 3.14$$
• The surface area of a cylinder $$=2πr^2+2πrh$$ ### Cylinder Volume and Surface Area – Example 1:

Find the volume and Surface area of the follow Cylinder. Solution:

Use volume formula: Volume $$= π$$ (radius)$$^2 ×$$ height,
Then: Volume $$=π(2)^2×8= 4π×8=32π$$
$$π=3.14$$ then: Volume $$=32π=32 × 3.14 = 100.48$$ cm$$^3$$
Use surface area formula: Surface area $$=2πr^2+2πrh$$
Then: $$=2π(2)^2+2π(2)(8)=2π(4)+2π(16)=8π+32π=40π$$
$$π=3.14$$ then: Surface area $$=40×3.14=125.6$$ cm$$^2$$

### Cylinder Volume and Surface Area – Example 2:

Find the volume and Surface area of the follow Cylinder. Solution:

Use volume formula: Volume $$= π$$ (radius)$$^2 ×$$ height,
Then: Volume $$=π(4)^2×6= π16×6=96π$$
$$π=3.14$$ then: Volume $$=96π=301.44$$ cm$$^3$$
Use surface area formula: Surface area $$=2πr^2+2πrh$$
Then: $$=2π(4)^2+2π(4)(6)=2π(16)+2π(24)=32π+48π=80π$$
$$π=3.14$$ then: Surface area $$=80×3.14=251.2$$ cm$$^2$$

## Exercises for Calculating Cylinder Volume and Surface Area

### Find the volume of each Cylinder. Round your answer to the nearest tenth. $$(\pi=3.14)$$

1. 2. 3. 1. $$\color{blue}{75.36 \ m^3}$$
2. $$\color{blue}{1,130.4 \ m^3}$$
3. $$\color{blue}{1,808.64 \ m^3}$$ 36% OFF

X

## How Does It Work? ### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.  ### 3. Checkout

Complete the quick and easy checkout process. ## Why Buy eBook From Effortlessmath? Save up to 70% compared to print  Help save the environment  Over 2,000 Test Prep titles available Over 80,000 happy customers Over 10,000 reviews with an average rating of 4.5 out of 5  