In this blog post, you learn how to find the volume and surface area of cylinders by using volume and surface area formula.

## Step by step guide to calculating Cylinders volume and surface area

- A cylinder is a solid geometric figure with straight parallel sides and a circular or oval cross section.
**Volume of Cylinder Formula \(= π\) (radius)\(^2 × \) height, \( π = 3.14\)****The surface area of a cylinder**\(=2πr^2+2πrh\)

### Example 1:

Find the volume and Surface area of the follow Cylinder.

**Solution:**

Use volume formula: **Volume** \(= π\) (radius)\(^2 × \) height,

Then: ** Volume** \(=π(2)^2×8= 4π×8=32π\)

\(π=3.14\) then: **Volume** \(=32π=32 × 3.14 = 100.48\) cm\(^3 \)

Use surface area formula:** Surface area** \(=2πr^2+2πrh\)

Then: \(=2π(2)^2+2π(2)(8)=2π(4)+2π(16)=8π+32π=40π\)

\(π=3.14\) then: **Surface area** \(=40×3.14=125.6\) cm\(^2\)

### Example 2:

Find the volume and Surface area of the follow Cylinder.

**Solution:**

Use volume formula: **Volume** \(= π\) (radius)\(^2 × \) height,

Then: ** Volume** \(=π(4)^2×6= π16×6=96π\)

\(π=3.14\) then: **Volume** \(=96π=301.44\) cm\(^3 \)

Use surface area formula:** Surface area** \(=2πr^2+2πrh\)

Then: \(=2π(4)^2+2π(4)(6)=2π(16)+2π(24)=32π+48π=80π\)

\(π=3.14\) then: **Surface area** \(=80×3.14=251.2\) cm\(^2\)

## Exercises

### Find the volume of each Cylinder. Round your answer to the nearest tenth. \((\pi=3.14)\)

### Download Cylinder Worksheet

- \(\color{blue}{75.36 \ m^3}\)
- \(\color{blue}{1,130.4 \ m^3}\)
- \(\color{blue}{1,808.64 \ m^3}\)