Cylinder

Cylinder

In this blog post, you learn how to find the volume and surface area of cylinders by using volume and surface area formula.

Step by step guide to calculating Cylinders volume and surface area

  • A cylinder is a solid geometric figure with straight parallel sides and a circular or oval cross section.
  • Volume of Cylinder Formula \(= π\) (radius)\(^2 × \) height, \( π = 3.14\)
  • The surface area of a cylinder \(=2πr^2+2πrh\)

Example 1:

Find the volume and Surface area of the follow Cylinder.

Solution:

Use volume formula: Volume \(= π\) (radius)\(^2 × \) height,
Then: Volume \(=π(2)^2×8= 4π×8=32π\)
\(π=3.14\) then: Volume \(=32π=32 × 3.14 = 100.48\) cm\(^3 \)
Use surface area formula: Surface area \(=2πr^2+2πrh\)
Then: \(=2π(2)^2+2π(2)(8)=2π(4)+2π(16)=8π+32π=40π\)
\(π=3.14\) then: Surface area \(=40×3.14=125.6\) cm\(^2\)

Example 2:

Find the volume and Surface area of the follow Cylinder.

Solution:

Use volume formula: Volume \(= π\) (radius)\(^2 × \) height,
Then: Volume \(=π(4)^2×6= π16×6=96π\)
\(π=3.14\) then: Volume \(=96π=301.44\) cm\(^3 \)
Use surface area formula: Surface area \(=2πr^2+2πrh\)
Then: \(=2π(4)^2+2π(4)(6)=2π(16)+2π(24)=32π+48π=80π\)
\(π=3.14\) then: Surface area \(=80×3.14=251.2\) cm\(^2\)

Exercises

Find the volume of each Cylinder. Round your answer to the nearest tenth. \((\pi=3.14)\)

Download Cylinder Worksheet

  1. \(\color{blue}{75.36 \ m^3}\)
  2. \(\color{blue}{1,130.4 \ m^3}\)
  3. \(\color{blue}{1,808.64 \ m^3}\)

Leave a Reply

Your email address will not be published. Required fields are marked *