How to Work with the Intermediate Value Theorem?

How to Work with the Intermediate Value Theorem?

A step-by-step guide to working with the intermediate value theorem

Working with the Intermediate Value Theorem – Example 1:

First, find the values of the given function at the \(x=0\) and \(x=2\).

Substitute \(x=0\):

\(f(x)=x^5-2x^3-2=0\) → \(f(0)=(0)^5-2(0)^3-2\)

\(f(0)=-2\)

Substitute \(x=2\):

\(f(x)=x^5-2x^3-2=0\) → \(f(2)=(2)^5-2(2)^3-2\)

\(f(2)=32-16-2\)

\(f(2)=14\)

Therefore, we conclude that at \(x = 0\), the curve is below zero; while at \(x = 2\), it is above zero.

Since the given equation is polynomial, its graph will be continuous. Therefore, by applying the intermediate value theorem, we can say that the graph should cross at some point between \([0, 2]\).

Exercises for Working with the Intermediate Value Theorem

  1. The function \(h(x)\) is continuous on the interval \((1,8)\). If \(h(1)=-7\) and \(h(8)=-6\) can you conclude that \(h(x)\) is ever equal to \(0\)?
  2. For \(f(x)=\frac{1}{x}\), \(f(-1)=-1< 0\) and \(f(1)=1>0\). Can we conclude that \(f(x)\) has a zero in the interval \([-1,1]\)?
  3. Can we use the intermediate value theorem to conclude that \(f(x)=sin x\) equals \(0.4\) at some place in the interval \([\frac{\pi}{2},\pi]\)?
This image has an empty alt attribute; its file name is answers.png
  1. \(\color{blue}{No}\)
  2. \(\color{blue}{No}\)
  3. \(\color{blue}{Yes}\)
Original price was: $109.99.Current price is: $54.99.
Original price was: $109.99.Current price is: $54.99.
Original price was: $114.99.Current price is: $54.99.

Related to This Article

What people say about "How to Work with the Intermediate Value Theorem? - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

X
51% OFF

Limited time only!

Save Over 51%

Take It Now!

SAVE $55

It was $109.99 now it is $54.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II