How to Work with the Intermediate Value Theorem?
A step-by-step guide to working with the intermediate value theorem
Working with the Intermediate Value Theorem – Example 1:
First, find the values of the given function at the \(x=0\) and \(x=2\).
Substitute \(x=0\):
\(f(x)=x^5-2x^3-2=0\) → \(f(0)=(0)^5-2(0)^3-2\)
\(f(0)=-2\)
Substitute \(x=2\):
\(f(x)=x^5-2x^3-2=0\) → \(f(2)=(2)^5-2(2)^3-2\)
\(f(2)=32-16-2\)
\(f(2)=14\)
Therefore, we conclude that at \(x = 0\), the curve is below zero; while at \(x = 2\), it is above zero.
Since the given equation is polynomial, its graph will be continuous. Therefore, by applying the intermediate value theorem, we can say that the graph should cross at some point between \([0, 2]\).
Exercises for Working with the Intermediate Value Theorem
- The function \(h(x)\) is continuous on the interval \((1,8)\). If \(h(1)=-7\) and \(h(8)=-6\) can you conclude that \(h(x)\) is ever equal to \(0\)?
- For \(f(x)=\frac{1}{x}\), \(f(-1)=-1< 0\) and \(f(1)=1>0\). Can we conclude that \(f(x)\) has a zero in the interval \([-1,1]\)?
- Can we use the intermediate value theorem to conclude that \(f(x)=sin x\) equals \(0.4\) at some place in the interval \([\frac{\pi}{2},\pi]\)?
- \(\color{blue}{No}\)
- \(\color{blue}{No}\)
- \(\color{blue}{Yes}\)
Related to This Article
More math articles
- Top 10 CBEST Prep Books (Our 2026 Favorite Picks)
- CLEP College Math FREE Sample Practice Questions
- 4th Grade OAA Math Worksheets: FREE & Printable
- Reciprocal Identities
- 6th Grade SBAC Math Worksheets: FREE & Printable
- Top 10 8th Grade Common Core Math Practice Questions
- 3rd Grade OST Math Practice Test Questions
- How to Discover the Solutions: “HSPT Math for Beginners” Comprehensive Guide
- 8th Grade Scantron Math Worksheets: FREE & Printable
- Convert Units of Measurement




























What people say about "How to Work with the Intermediate Value Theorem? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.