Algebra Puzzle – Critical Thinking 15

Algebra Puzzle – Critical Thinking 15

Critical thinking challenges like this one can be as much a part of a math class as learning concepts, computations, and formulas.

Challenge:

What is the smallest positive integer p such that 1080p is a perfect cube number?

The Absolute Best Book to challenge your Smart Student!

The correct answer is 25.

First, find the factor of 1080p. The prime factors of 1080p are:
\(2^3×3^3×5×p\)
In order for \(2^3×3^3×5×p\) to be a perfect cube, each prime factor must come in sets of triples. Since, we have \(2^3×3^3×5\), thus, we only need to change 5 to \(5^3\). Therefore, p equals to \(5^2\) or 25.

Related to "Algebra Puzzle – Critical Thinking 15"

Other Topics Puzzle – Challenge 100
Other Topics Puzzle – Challenge 100
Other Topics Puzzle – Challenge 99
Other Topics Puzzle – Challenge 99
Other Topics Puzzle – Challenge 98
Other Topics Puzzle – Challenge 98
Other Topics Puzzle – Challenge 97
Other Topics Puzzle – Challenge 97
Other Topics Puzzle – Challenge 96
Other Topics Puzzle – Challenge 96
Other Topics Puzzle – Challenge 95
Other Topics Puzzle – Challenge 95
Other Topics Puzzle – Challenge 94
Other Topics Puzzle – Challenge 94
Intelligent Math Puzzle – Challenge 93
Intelligent Math Puzzle – Challenge 93
Intelligent Math Puzzle – Challenge 92
Intelligent Math Puzzle – Challenge 92
Intelligent Math Puzzle – Challenge 91
Intelligent Math Puzzle – Challenge 91

Leave a Reply

Your email address will not be published. Required fields are marked *