How to Solve Natural Logarithms Problems? (+FREE Worksheet!)
In this blog post, you will learn more about Natural Logarithms and how to solve problems related to natural logarithms.
Related Topics
Step by step guide to solve Natural Logarithms
- A natural logarithm is a logarithm that has a special base of the mathematical constant \(e\), which is an irrational number approximately equal to \(2.71\).
- The natural logarithm of \(x\) is generally written as ln \(x\), or \(\log_{e}{x}\).
Natural Logarithms – Example 1:
Solve the equation for \(x\): \(e^x=3\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(3) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(3) \)
\(ln(e)=1\), then: \(x=ln(3) \)
Best Algebra Prep Resource
Natural Logarithms – Example 2:
Solve equation for \(x\): \(ln(2x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(2x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(2x-1)=ln(e)\), then: \(2x-1=e→x=\frac{e+1}{2}\)
Natural Logarithms – Example 3:
Solve the equation for \(x\): \(e^x=5\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(5) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(5) \)
\(ln(e)=1\), then: \(x=ln(5) \)
Natural Logarithms – Example 4:
Solve equation for \(x\): \(ln(5x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(5x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(5x-1)=ln(e)\), then: \(5x-1=e→x=\frac{e+1}{5}\)
Exercises to practice Natural Logarithms
The Perfect Book to Ace the College Algebra Course
Solve each equation for \(x\).
- \(\color{blue}{e^x=3}\)
- \(\color{blue}{e^x=4}\)
- \(\color{blue}{e^x=8}\)
- \(\color{blue}{ln x=6}\)
- \(\color{blue}{ln (ln x)=5}\)
- \(\color{blue}{e^x=9}\)
- \(\color{blue}{ln(2x+5)=4}\)
- \(\color{blue}{ln(2x-1)=1}\)
Answers
- \(\color{blue}{x=ln 3}\)
- \(\color{blue}{x=ln 4,x=2ln(2)}\)
- \(\color{blue}{x=ln 8,x=3ln(2)}\)
- \(\color{blue}{x=e^6}\)
- \(\color{blue}{x=e^{e^5}}\)
- \(\color{blue}{x=ln 9,x=2ln(3)}\)
- \(\color{blue}{x=\frac{e^4-5}{2}}\)
- \(\color{blue}{x=\frac{e+1}{2}}\)
The Best Books You Need to Ace Algebra
Related to This Article
More math articles
- How to Unlock the Secrets: “SIFT Math for Beginners” Solution Manual
- 8th Grade NHSAS Math Worksheets: FREE & Printable
- How to Evaluate Integers Raised to Rational Exponents
- Top 10 8th Grade Common Core Math Practice Questions
- 4th Grade SC Ready Math Worksheets: FREE & Printable
- Number Properties Puzzle – Challenge 21
- What to Consider when Retaking the ACT or SAT?
- Trigonometric Ratios
- How to Study for a Math Test in 7 Easy Steps
- FREE 4th Grade Common Core Math Practice Test
What people say about "How to Solve Natural Logarithms Problems? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.