Properties of Logarithms

Do you want to know how to Properties of Logarithms? you can do it in two easy steps.

Properties of Logarithms

Related Topics

Properties of Logarithms

Learn some logarithms properties:

  • \(a^{log_{a}{b}}=b\)
  • \(log_{a}{1}=0\)
  • \(log_{a}{a}=1\)
  • \(log_{a}{x.y}=log_{a}{x}+\log_{a}{y}\)
  • \(log_{a}{\frac{x}{y}}=log_{a}{x}-\log_{a}{y}\)
  • \(log_{a}{\frac{1}{x}}=-log_{a}{x}\)
  • \(log_{a}{x^p}=p log_{a}{x}\)
  • \(log_{x^k}{x}=\frac{1}{x}log_{a}{x}\), for \(k\neq0\)
  • \(log_{a}{x}= log_{a^c}{x^c}\)
  • \(log_{a}{x}=\frac{1}{log_{x}{a}}\)

Logarithms Properties – Example 1:

Expand this logarithm. \(log ⁡(8×5)=\)

Solution:

Use log rule: \(log_{a}{x.y}=log_{a}{x}+\log_{a}{y}\)

then: \(log ⁡(8×5)= log 8 + log 5\)

Logarithms Properties – Example 2:

Condense this expression to a single logarithm. \(log 2-log 9=\)

Solution:

Use log rule: \(log_{a}{\frac{x}{y}}=log_{a}{x}-\log_{a}{y}\)

then: \(log 2-log 9= log{\frac{2}{9}}\)

Logarithms Properties – Example 3:

Expand this logarithm. \(log ⁡(2×3)=\)

Solution:

Use log rule: \(log_{a}{x.y}=log_{a}{x}+\log_{a}{y}\)

then: \(log ⁡(2×3)= log 2 + log 3\)

Logarithms Properties – Example 4:

Condense this expression to a single logarithm. \(log 4-log 3=\)

Solution:

Use log rule: \(log_{a}{\frac{x}{y}}=log_{a}{x}-log_{a}{y}\)

then: \(log 4-log 3= log{\frac{4}{3}}\)

Exercises for Logarithms Properties

Expand each logarithm.

  1. \(\color{blue}{log ⁡(12×6)=}\)
  2. \(\color{blue}{log ⁡(9×4)=}\)
  3. \(\color{blue}{log ⁡(3×7)=}\)
  4. \(\color{blue}{log{\frac{3}{4}}}\)
  5. \(\color{blue}{log{\frac{5}{7}}}\)
  6. \(\color{blue}{log({\frac{2}{5}})^3}\)
  7. \(\color{blue}{log ⁡(2×3^4)=}\)
  8. \(\color{blue}{ log({\frac{5}{7}})^4}\)

Answers

  1. \(\color{blue}{log 12+log 6}\)
  2. \(\color{blue}{ log 9+log 4}\)
  3. \(\color{blue}{log 3+log 7}\)
  4. \(\color{blue}{ log 3-log 4}\)
  5. \(\color{blue}{ log 5-log 7}\)
  6. \(\color{blue}{3 log 2-3 log 5}\)
  7. \(\color{blue}{log 2+4 log 3}\)
  8. \(\color{blue}{4log 5-4 log 7}\)

What people say about "Properties of Logarithms"?

No one replied yet.

Leave a Reply

X
30% OFF

Limited time only!

Save Over 30%

Take It Now!

SAVE $5

It was $16.99 now it is $11.99

Math and Critical Thinking Challenges: For the Middle and High School Student