Properties of Logarithms

Logarithms Properties

Logarithms Properties

Do you want to know how to Properties of Logarithms? you can do it in two easy steps. Properties of Logarithms Learn some logarithms properties: \(a^{\log_{a}{b}}=b\)\(\log_{a}{1}=0\)\(\log_{a}{a}=1\)\(\log_{a}{x.y}=\log_{a}{x}+\log_{a}{y}\)\(\log_{a}{\frac{x}{y}}=\log_{a}{x}-\log_{a}{y}\)\(\log_{a}{\frac{1}{x}}=-\log_{a}{x}\)\(\log_{a}{x^p}=p\log_{a}{x}\)\(\log_{x^k}{x}=\frac{1}{x}\log_{a}{x}, for k\neq0\)\(\log_{a}{x}=\log_{a^c}{x^c}\)\(\log_{a}{x}=\frac{1}{\log_{x}{a}}\) Properties of Logarithms Logarithms Properties - Example 1: Expand this logarithm. \(log...
Read more ...
RezaReza