Properties of Logarithms

How to Use Properties of Logarithms

How to Use Properties of Logarithms

There are several logarithms properties that help you solve logarithm equations. Here are some of them and their applications. Necessary rules to solving Logarithm Equations Let’s review some logarithms properties: \(a^{log_{a}{⁡b }}=b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ log_{a⁡}{\frac{1}{x}}=- log_{a}⁡{x}\)\(log_{a}{⁡1}=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ log_{a⁡}{x^p}=p \ log_{a}⁡{x}\)\(log_{a}{⁡a}=1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
Read more ...
RezaReza
Logarithms Properties

Logarithms Properties

Do you want to know how to Properties of Logarithms? you can do it in two easy steps. Properties of Logarithms Learn some logarithms properties: \(a^{\log_{a}{b}}=b\)\(\log_{a}{1}=0\)\(\log_{a}{a}=1\)\(\log_{a}{x.y}=\log_{a}{x}+\log_{a}{y}\)\(\log_{a}{\frac{x}{y}}=\log_{a}{x}-\log_{a}{y}\)\(\log_{a}{\frac{1}{x}}=-\log_{a}{x}\)\(\log_{a}{x^p}=p\log_{a}{x}\)\(\log_{x^k}{x}=\frac{1}{x}\log_{a}{x}, for k\neq0\)\(\log_{a}{x}=\log_{a^c}{x^c}\)\(\log_{a}{x}=\frac{1}{\log_{x}{a}}\) Properties of Logarithms Logarithms Properties - Example 1: Expand this logarithm. \(log...
Read more ...
RezaReza