Properties of Logarithms

Properties of Logarithms

Properties of Logarithms

Do you want to know how to Properties of Logarithms? you can do it in two easy steps. Step by step guide to Properties of Logarithms Learn some logarithms properties: \(a^{\log_{a}{b}}=b\)\(\log_{a}{1}=0\)\(\log_{a}{a}=1\)\(\log_{a}{x.y}=\log_{a}{x}+\log_{a}{y}\)\(\log_{a}{\frac{x}{y}}=\log_{a}{x}-\log_{a}{y}\)\(\log_{a}{\frac{1}{x}}=-\log_{a}{x}\)\(\log_{a}{x^p}=p\log_{a}{x}\)\(\log_{x^k}{x}=\frac{1}{x}\log_{a}{x}, for k\neq0\)\(\log_{a}{x}=\log_{a^c}{x^c}\)\(\log_{a}{x}=\frac{1}{\log_{x}{a}}\) Properties of Logarithms Example 1: Expand this logarithm. \(log...
Read more ...
RezaReza