# How to Evaluate Trigonometric Function? (+FREE Worksheet!)

Learn how to evaluate trigonometric functions in a few simple steps with examples and detailed solutions.

## Step by step guide to Evaluating Trigonometric Function

• Find the reference angle. (It is the smallest angle that you can make from the terminal side of an angle with the $$x$$-axis.)
• Find the trigonometric function of the reference angle.

### Evaluating Trigonometric Function – Example 1:

Find the exact value of the trigonometric function. $$tan$$$$\frac{4π}{3}$$

Solution:

Rewrite the angles for an $$\frac{4π}{3}$$:
$$tan$$ $$\frac{4π}{3}=tan \frac{3π+π}{3}=tan⁡(π+\frac{1}{3} π)$$
Use the periodicity of $$tan$$: $$tan$$$$(x+π .k)= tan (x)$$
$$tan$$$$⁡(π+\frac{1}{3} π)=$$ $$tan$$$$⁡(\frac{1}{3} π)=\sqrt{3}$$

The Absolute Best Books to Ace Pre-Algebra to Algebra II

Original price was: $89.99.Current price is:$49.99.

### Evaluating Trigonometric Function – Example 2:

Find the exact value of the trigonometric function. $$cos$$ $$270^\circ$$

Solution:

Write $$cos$$ $$(270^\circ)$$ as $$cos$$ $$(180^\circ+90^\circ)$$. Recall that $$cos⁡180^\circ=-1,cos ⁡90^\circ =0$$
The reference angle of $$270^\circ$$ is $$90^\circ$$. Therefore, $$cos$$ $$270^\circ=0$$

### Evaluating Trigonometric Function – Example 3:

Find the exact value of the trigonometric function. $$cos$$ $$225^\circ$$

Solution:

Write $$cos$$ $$(225^\circ)$$ as $$cos$$ $$(180^\circ+45^\circ)$$. Recall that $$cos$$$$⁡180^\circ=-1$$, $$cos$$$$⁡45^\circ =\frac{\sqrt{2}}{2}$$
$$225^\circ$$ is in the third quadrant and $$cos$$ is negative in the quadrant $$3$$. The reference angle of $$225^\circ$$ is $$45^\circ$$. Therefore, $$cos$$ $$225^\circ=-\frac{\sqrt{2}}{2}$$

### Evaluating Trigonometric Function – Example 4:

Find the exact value of the trigonometric function. $$tan$$ $$\frac{7π}{6}$$

Solution:

Rewrite the angles for $$tan$$ $$\frac{7π}{6}$$:
$$tan$$ $$\frac{7π}{6}=$$ $$tan$$ $$(\frac{6π+π}{6})=tan⁡(π+\frac{1}{6} π)$$
Use the periodicity of $$tan$$: $$tan$$$$(x+π .k)=$$ $$tan$$$$(x)$$
$$tan⁡(π+\frac{1}{6} π)=$$ $$tan$$$$⁡(\frac{1}{6} π)=\frac{\sqrt{3}}{3}$$

## Exercises for Evaluating Trigonometric Function

### Find the exact value of each trigonometric function.

• $$\color{blue}{cot \ -495^\circ=}$$
• $$\color{blue}{tan \ 405^\circ=}$$
• $$\color{blue}{cot \ 390^\circ=}$$
• $$\color{blue}{cos \ -300^\circ=}$$
• $$\color{blue}{cot \ -210^\circ=}$$
• $$\color{blue}{tan \ \frac{7π}{6}=}$$

• $$\color{blue}{1}$$
• $$\color{blue}{1}$$
• $$\color{blue}{\sqrt{3}}$$
• $$\color{blue}{\frac{1}{2}}$$
• $$\color{blue}{- \sqrt{3} }$$
• $$\color{blue}{\frac{ \sqrt{3} }{3}}$$

The Greatest Books for Students to Ace the Algebra

### What people say about "How to Evaluate Trigonometric Function? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

X
45% OFF

Limited time only!

Save Over 45%

SAVE $40 It was$89.99 now it is \$49.99