# How to Use the Distributive Property To solve expressions in the form of $$a(b + c)$$, we need to use the distributive property or the distributive property of multiplication.

## Step by step guide to use the distributive property correctly

• Distributive Property:
$$\color{blue}{a \ (b \ + \ c)=ab \ + \ ac}$$

### The Distributive Property – Example 1:

Simplify. $$(- \ 2)(x \ – \ 3)=$$

Solution:

Use Distributive Property formula: $$a \ (b \ + \ c)=ab \ + \ ac$$
$$(-2)(x-3)=-2x+6$$

### The Distributive Property – Example 2:

Simplify. $$(5)(6 \ x \ – \ 3)=$$

Solution:

Use Distributive Property formula: $$a \ (b \ + \ c)=ab \ + \ ac$$
$$(5)(6 \ x \ – \ 3)=30 \ x \ – \ 15$$

### The Distributive Property – Example 3:

Simplify. $$(5x-3)(–5)=$$

Solution:

Use Distributive Property formula: $$a(b+c)=ab+ac$$
$$(5x-3)(–5)=-25x+15$$

### The Distributive Property – Example 4:

Simplify $$(-8)(2x-8)=$$

Solution:

Use Distributive Property formula: $$a(b+c)=ab+ac$$
$$(-8)(2x-8)=-16x+64$$

## Exercises for Useing the Distributive Property

### Use the distributive property to simplify each expression.

• $$\color{blue}{– (– 2 – 5x)}$$
• $$\color{blue}{(– 6x + 2)(–1)}$$
• $$\color{blue}{(– 5) (x – 2)}$$
• $$\color{blue}{(– 2x) (– 1 + 9x) – 4x (4 + 5x)}$$
• $$\color{blue}{3 (– 5x – 3) + 4(6 – 3x)}$$
• $$\color{blue}{(– 2)(x + 4) – (2 + 3x)}$$

• $$\color{blue}{5x + 2}$$
• $$\color{blue}{6x – 2}$$
• $$\color{blue}{–5x + 10}$$
• $$\color{blue}{– 38x^2 – 14x}$$
• $$\color{blue}{– 27x + 15}$$
• $$\color{blue}{– 5x – 10}$$ 36% OFF

X

## How Does It Work? ### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.  ### 3. Checkout

Complete the quick and easy checkout process. ## Why Buy eBook From Effortlessmath? Save up to 70% compared to print  Help save the environment  Over 2,000 Test Prep titles available Over 80,000 happy customers Over 10,000 reviews with an average rating of 4.5 out of 5  