Special Right Triangles

The special right triangle is a right triangle whose sides are in a particular ratio. According to the special right triangle rules, it is not necessary to use the Pythagorean theorem to get the size of a side.

Related Topics

A step-by-step guide to solving Special Right Triangles

  • Two special right triangles are \(45^{\circ}-45^{\circ}-90^{\circ}\) and \(30^{\circ}-60^{\circ}-90^{\circ}\) triangles.
  • In a special \(45^{\circ}-45^{\circ}-90^{\circ}\) triangle, the three angles are \(45^{\circ}, 45^{\circ}\) and \(90^{\circ}\). The lengths of the sides of this triangle are in the ratio of \(1:1:\sqrt{2}\).
  • In a special triangle \(30^{\circ}-60^{\circ}-90^{\circ}\), the three angles are \(30^{\circ}-60^{\circ}-90^{\circ}\). The lengths of this triangle are in the ratio of \(1:\sqrt{3}:2\).

Special Right Triangles – Example 1:

Find the length of the hypotenuse of a right triangle if the length of the other two sides are both 4 inches.

Solution:

This is a right triangle with two equal sides. Therefore, it must be a \(45^{\circ}-45^{\circ}-90^{\circ}\) triangle. Two equivalent sides are 4 inches. The ratio of sides: \(x:x:x\sqrt{2}\). The length of the hypotenuse is \(4\sqrt{2}\) inches. \(x:x:x\sqrt{2}→4:4:4\sqrt{2}\)

Special Right Triangles – Example 2:

The length of the hypotenuse of a triangle is 6 inches. What are the lengths of the other two sides if one angle of the triangle is \(30^{\circ}\)?

Solution:

The hypotenuse is 6 inches and the triangle is a \(30^°-60^°-90^°\) triangle. Then, one side of the triangle is 3 (it’s half the side of the hypotenuse) and the other side is \(3\sqrt{3}\). (it’s the smallest side times \(\sqrt{3}\)) \(x:x\sqrt{3}:2x→x=3→x:x\sqrt{3}:2x=3:3\sqrt{3}:6\)

Exercises for Special Right Triangles

Find the value of x and y in each triangle.

1-

2-

3-

4-

5-

6-

This image has an empty alt attribute; its file name is answers.png
  1. \(\color{blue}{x=1,y=\frac{\sqrt{3}}{2}}\)
  2. \(\color{blue}{x=4\sqrt{3},y=8\sqrt{3}}\)
  3. \(\color{blue}{x=8\sqrt{2}}\)
  4. \(\color{blue}{x=3\sqrt{2},y=3\sqrt{2}}\)
  5. \(\color{blue}{x=3\sqrt{3},y=6\sqrt{3}}\)
  6. \(\color{blue}{x=4\,y=2\sqrt{2}}\)

Related to "Special Right Triangles"

How to Determine Limits Using the Squeeze Theorem?How to Determine Limits Using the Squeeze Theorem?
How to Determine Limits Using Algebraic Manipulation?How to Determine Limits Using Algebraic Manipulation?
How to Estimate Limit Values from the Graph?How to Estimate Limit Values from the Graph?
Properties of LimitsProperties of Limits
How to Find the Expected Value of a Random Variable?How to Find the Expected Value of a Random Variable?
How to Define Limits Analytically Using Correct Notation?How to Define Limits Analytically Using Correct Notation?
How to Solve Multiplication Rule for Probabilities?How to Solve Multiplication Rule for Probabilities?
How to Solve Venn Diagrams and the Addition Rule?How to Solve Venn Diagrams and the Addition Rule?
How to Find the Direction of Vectors?How to Find the Direction of Vectors?
Vectors IntroductionVectors Introduction

What people say about "Special Right Triangles"?

No one replied yet.

Leave a Reply