When a line (transversal) intersects two parallel lines in the same plane, eight angles are formed. In this article, we will teach you how to find the missing angles in this case by using the Parallel Lines and Transversals rules.

## Related Topics

- Special Right Triangles
- How to Solve Triangles Problems
- How to Find Volume and Surface Area of Cubes
- How to Calculate Cylinder Volume and Surface Area
- How to Find Complementary and Supplementary Angles

## A step-by-step guide to solving Parallel Lines and Transversals Problem

- When a line (transversal) intersects two parallel lines in the same plane, eight angles are formed. In the following diagram, a transversal intersects two parallel lines. Angles 1, 3, 5, and 7 are congruent. Angles 2, 4, 6, and 8 are also congruent.
- In the following diagram, the following angles are supplementary angles (their sum is 180):

• Angles 1 and 8

• Angles 2 and 7

• Angles 3 and 6

• Angles 4 and 5

## Examples

### Parallel Lines and Transversals – Example 1:

In the following diagram, two parallel lines are cut by a transversal. What is the value of \(x\)?

**Solution**:

The two angles \(3x-15\) and \(2x+7\) are equivalent.

That is: \(3x-15=2x+7\)

Now, solve for \(x: 3x-15+15=2x+7+15 →\)

\(3x=2x+22→3x-2x=2x+22-2x→x=22\)

### Parallel Lines and Transversals – Example 2:

In the following diagram, two parallel lines are cut by a transversal. What is the value of \(x\)?

**Solution**:

The two angles \(75^\circ\) and \(11x-2\) are equal. \(11x-2=75\)

Now, solve for \(x: 11x-2+2=75+2→ 11x=77→x=\frac{77}{11}→x=7\)

### Parallel Lines and Transversals – Example 3:

In the following diagram, two parallel lines are cut by a transversal. What is the value of \(x\)?

**Solution**:

The two angles \(7x-35\) and \(3x+45\) are equivalents.

That is: \(7x-35=3x+45\)

Now, solve for \(x: 7x-35+35=3x+45+35 →\)

\(7x=3x+80→7x-3x=3x+80-3x→4x=80→x=\frac{80}{4}→x=20\)

### Parallel Lines and Transversals – Example 4:

In the following diagram, two parallel lines are cut by a transversal. What is the value of \(x\)?

**Solution**:

The two angles \(3x-27\) and \(-x+33\) are equivalents.

That is: \(3x-27=-x+33\)

Now, solve for \(x: 3x-27+27=-x+33+27 →\)

\(3x=-x+60→3x+x=-x+60+x→4x=60→x=\frac{60}{4}→x=15\)

## Exercises for Parallel Lines and Transversals

### Find missing angles with Parallel Lines and Transversals.

1.Find the measure of the angle indicated.

2. Solve for \(x\).

3. Find the measure of the angle indicated.

4. Solve for \(x\).

1.\(\color{blue}{110^\circ}\)

2.\(\color{blue}{x=8}\)

3. \(\color{blue}{84^\circ}\)

4.\(\color{blue}{x=5}\)

### More math articles

- 10 Most Common 4th Grade PARCC Math Questions
- How to Add and Subtract Integers? (+FREE Worksheet!)
- How to Use the Distributive Property? (+FREE Worksheet!)
- Number Properties Puzzle – Challenge 15
- SSAT Upper Level Math FREE Sample Practice Questions
- Properties of the Horizontal Line
- The Ultimate SSAT Upper-Level Math Course (+FREE Worksheets)
- What’s The Best Laptop For Online Math Teachers?
- Tips for Learning Mathematics for the Humanitarians
- Full-Length 6th Grade SBAC Math Practice Test

## What people say about "How to Solve Parallel Lines and Transversals Problems? (+FREE Worksheet!)"?

No one replied yet.