# How to Scale a Function Horizontally?

Horizontal scaling means stretching or shrinking the diagram of function along the $$x$$-axis.  In the following guide, you will learn how to horizontal scaling. Horizontal scaling refers to the shrinking or stretching of the curve along the $$x$$-axis by some specific units.

## A step-by-step guide to horizontal scaling

Horizontal scaling means stretching or shrinking the diagram of function along the $$x$$-axis. The horizontal scale can be done by multiplying the input by a constant.

Consider the following example:

If we have a function,$$y=f(x)$$, the horizontal scaling of this function can be written as: $$y=f(Cx)$$.

Note:

• If $$C>1$$, the graph shrinks.
• If $$C<1$$, the graph stretches.

### How is a graph scaled horizontally?

• Step 1: Select a constant with which we want to scale the function.
• Step 2: Write the new function as $$g(x)=fC(x)$$, where $$C$$ is the constant.
• Step 3: Trace the new function graph by replacing each value of $$x$$ with $$Cx$$.
• Step 4: $$X$$ coordinate of each point in the graph is multiplied by $$±C$$, and the curve shrinks or stretches accordingly.

### Horizontal Scaling – Example 1:

Horizontally stretch the function $$f(x)=x+2$$ by a factor of $$2$$ units.

## Exercises for Horizontal Scaling

• Horizontal scaling of function $$f(x) = sin x$$ by a factor of $$-3$$.
• Horizontal scaling of function $$f(x) =x^2+3x+2$$ by a factor of $$4$$.

• Horizontal scaling of function $$f(x) = sin x$$ by a factor of $$-3$$.
• Horizontal scaling of function $$f(x) =x^2+3x+2$$ by a factor of $$4$$.

### What people say about "How to Scale a Function Horizontally? - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

X
30% OFF

Limited time only!

Save Over 30%

SAVE $5 It was$16.99 now it is \$11.99