# Full-Length TASC Math Practice Test-Answers and Explanations Did you take the TASC Math Practice Test? If so, then it’s time to review your results to see where you went wrong and what areas you need to improve.

## TASC Mathematics Practice Test Answers and Explanations

1- Choice B is correct
$$5^5=5×5×5×5×5=3,125$$

2- Choice B is correct
The area of the floor is: $$9$$cm$$× 16$$ cm $$= 144$$ cm$$^2$$
The number of tiles needed $$= 144 ÷ 12 = 12$$

3- Choice A is correct
average $$= \frac{sum of terms }{number of terms}=\frac{14+ 11+5+19+24+17}{6} = \frac{90}{6} = 15$$

4- Choice C is correct
Use Pythagorean Theorem: $$a^2+b^2=c^2$$
$$6^2 + 8^2 = c^2 ⇒ 36+64=c^2 ⇒ 100=c^2⇒c=10$$

5- Choice C is correct
Let $$x$$ be the number. Write the equation and solve for $$x. (36 – x) ÷ x = 5$$
Multiply both sides by $$x. (36 – x) = 5x$$, then add x both sides. $$36 = 6x$$, now divide both sides by 6.
$$x = 6$$

6- Choice D is correct
Use percent formula: part $$=\frac{ percent}{100}×$$whole
$$75=\frac{percent}{100}×50 ⇒ 75=\frac{percent ×50}{100} ⇒ 75=\frac{percent ×5}{10}$$, multiply both sides by $$10. 750=$$percent $$×5$$, divide both sides by $$5. 150=$$percent

7- Choice B is correct
Use this formula: Percent of Change $$\frac{New Value-Old Value}{Old Value}×100\%$$
$$\frac{20000-25000}{25000} ×100\%=20\%$$ and $$\frac{16000-20000}{20000}×100\%=20\%$$

8- Choice A is correct
Let $$x$$ be the number of years. Therefore, $1,800 per year equals $$1800x$$. starting from$21,000 annual salary means you should add that amount to $$1800x$$. Income more than that is: $$I > 1800x + 21000$$

9- Choice C is correct
Let $$x$$ be the original price.
If the price of the sofa is decreased by $$12\%$$ to $528, then: $$88\%$$ of $$x=528 ⇒ 0.88x=528 ⇒ x=528÷0.88=600$$ 10- Choice C is correct The sum of supplement angles is 180. Let $$x$$ be that angle. Therefore, $$x + 5x = 180$$ $$6x = 180$$, divide both sides by $$6: x = 30$$ 11- Choice C is correct Write the equation and solve for $$B$$: $$0.80 A = 0.40 B$$, divide both sides by 0.40, then: $$\frac{0.80}{0.40} A=B$$, therefore: $$B=2A$$, and $$B$$ is 2 times of $$A$$ or it’s $$200\%$$ of $$A$$. 12- Choice B is correct The weight of 9.8 meters of this rope is: $$9.8×450$$g$$=4,410$$ g $$1$$ kg $$= 1,000$$ g, therefore, $$4,410$$ g$$÷1000=4.41$$ kg 13- Choice D is correct The average speed of john is: $$120÷5=24$$ km The average speed of Alice is: $$168÷6=28$$ km Write the ratio and simplify. $$24 : 28 ⇒ 6 : 7$$ 14- Choice C is correct $$14×10=140$$, Petrol use: $$10×3=30$$ liters Petrol cost: $$30×2=60$$ Money earned: $$140-60=80$$ 15- Choice D is correct Let $$x$$ be the original price. If the price of a laptop is decreased by $$15\%$$ to$476, then:
$$85\%$$ of $$x=476 ⇒ 0.85x=476 ⇒ x=476÷0.85=560$$

## The Absolute Best Book to Ace the TASC Math Test

16- Choice B is correct
The percent of girls playing tennis is: $$60 \% × 20 \% = 0.60 × 0.20 = 0.12 = 12 \%$$

17- Choice A is correct
Area of the circle is less than $$16 π$$. Use the formula of areas of circles.
Area $$= πr^2 ⇒ 81 π> πr^2⇒ 81 > r^2⇒ r < 9$$
Radius of the circle is less than 9. Let’s put 9 for the radius. Now, use the circumference formula:
Circumference $$=2πr=2π (9)=18π$$
Since the radius of the circle is less than 9. Then, the circumference of the circle must be less than $$18 π$$. Only choice A is less than $$18 π$$.

18- Choice D is correct
$$3.5\%$$ of the volume of the solution is alcohol. Let $$x$$ be the volume of the solution. Then: $$3.5\%$$ of $$x=49$$ ml $$⇒ 0.035 x=49 ⇒ x=49÷0.035=1400$$

19- Choice A is correct
$$\begin{cases}x-3y=9\\3x+y=7\end{cases}→$$Multiply the button equation by 3 then,
$$\begin{cases}x-3y=9\\9x+3y=21\end{cases} →$$Add two equations
$$10x=30→x=3$$ , plug in the value of $$y$$ into the first equation
$$x-3y=9→3-3y=9→-3y=9-3 → -3y=6 →y=-2$$

20- Choice C is correct
If the length of the box is 24, then the width of the box is one fourth of it, 6, and the height of the box is 2 (one third of the width). The volume of the box is: V = lwh = $$(24) (6) (2) = 288$$

21- Choice B is correct
Use the formula for Percent of Change $$\frac{New Value-Old Value}{Old Value}×100\%$$
$$\frac{24-30}{30}×100\%= –20\%$$ (Negative sign here means that the new price is less than old price).

22- Choice C is correct
To find the number of possible outfit combinations, multiply number of options for each factor: $$5×2×6=60$$

23- Choice D is correct
Use simple interest formula: I=prt (I = interest,p = principal,r = rate,t = time)
$$I=(14,000)(0.032)(5)=2,240$$

24- Choice B is correct
The area of the trapezoid is:
Area$$=\frac{1}{2}h(b_1+b_2 )=\frac{1}{2}(x)(9+7)=96→8x=96→x=12$$ $$y=\sqrt{9^2+12^2}=\sqrt{81+144}=\sqrt{225}=15$$

25- Choice B is correct
Use distance formula: Distance $$=$$ Rate $$×$$ time ⇒ $$486 = 60 ×$$T, divide both sides by $$60. \frac{486 }{ 60} =$$ T $$⇒$$ T $$= 8.1$$ hours.
Change hours to minutes for the decimal part. 0.1 hours $$= 0.1 × 60 = 6$$minutes.

26- Choice B is correct
If the score of Mia was 50, therefore the score of Ava is 25. Since, the score of Emma was half as that of Ava, therefore, the score of Emma is 12.5.

27- Choice B is correct
The equation of a line is in the form of $$y=mx+b$$, where m is the slope of the line and b is the y-intercept of the line.
Two points $$(5,2)$$ and $$(3,6)$$ are on line A. Therefore, the slope of the line A is:
slope of line A$$=\frac{y_2- y_1}{x_2 – x_1 } = \frac{6-2}{3-5}=\frac{4}{-2}=-2$$
The slope of line A is $$-2$$. Thus, the formula of the line A is:
$$y=mx+b=-2x+b$$, choose a point and plug in the values of $$x$$ and $$y$$ in the equation to solve for b. Let’s choose point $$(5, 2)$$. Then:
$$y=-2x+b→2=-2(5)+b→b=2+10=12$$
The equation of line A is: $$y=-2x+12$$
Now, let’s review the choices provided:
A. $$(-1,2) y=-2x+12→2=2+12=14$$ This is not true.
B. $$(2,8) y=-2x+12→8=-4+12=8$$ This is true.
C. $$(3,5) y=-2x+12→5=-6+12=6$$ This is not true.
D. $$(-2,-4) y=-2x+12→-4=4+12=16$$ This is not true!

28- Choice A is correct
Formula for the Surface area of a cylinder is: $$SA=2πr^2+2πrh→144π=2πr^2+2πr(21)→r^2+21r-72=0$$
$$(r+24)(r-3)=0→r=3$$ or $$r= -24$$ (unacceptable)

29- Choice A is correct
Let $$x$$ be the number. Write the equation and solve for $$x$$.
$$\frac{1}{4} ×20= \frac{2}{3} × x ⇒ \frac{1×20}{4}= \frac{2x}{3}$$ , use cross multiplication to solve for $$x$$.
$$20×3=2x×4 ⇒60=8x ⇒ x=7.5$$

30- Choice C is correct
To find the discount, multiply the number by ($$100\% –$$ rate of discount).
Therefore, for the first discount we get: $$(D) (100\% – 25\%) = (D) (0.75) = 0.75 D$$, For increase of $$15 \%: (0.75 D) (100\% + 15\%) = (0.75 D) (1.15) = 0.8625 D = 86.25\%$$ of $$D$$

## Best TASC Math Prep Resource for 2020

31- Choices C is correct
Some of prime numbers are: $$2, 3, 5, 7, 11, 13$$
Find the product of two consecutive prime numbers:
$$2 × 3 = 6$$ (not in the options) $$3 × 5 = 15$$ (not in the options)
$$5 × 7 = 35$$ (bingo!) $$7 × 11 = 77$$ (not in the options)

32- Choice A is correct
Let $$x$$ be the smallest number. Then, these are the numbers:
$$x, x+1, x+2, x+3, x+4,x+5$$
average=$$\frac{sum of terms }{number of terms} ⇒$$
$$16.5=\frac{x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)}{6}⇒16.5=\frac{6x+15}{6} ⇒ 99=6x+15 ⇒ 84=6x ⇒ x=14$$

33- Choice B is correct
Let’s compare each fraction:
$$\frac{1}{4}<\frac{2}{5}< \frac{3}{7}<\frac{5}{8}$$ Only choice C provides the right order.

34- Choice D is correct
Use the information provided in the question to draw the shape.
Use Pythagorean Theorem: $$a^2+ b^2=c^2$$
$$50^2+ 120^2=c^2 ⇒ 2500+14400= c^2 ⇒ 16900=c^2 ⇒ c=130$$

35- Choice D is correct
The ratio of boy to girls is $$2:5$$. Therefore, there are 2 boys out of 7 students.
To find the answer, first divide the total number of students by 9, then multiply the result by 2. $$49÷7=7 ⇒ 7×2=14$$
There are 14 boys and $$35 (49 – 14)$$ girls. So, 21 more boys should be enrolled to make the ratio $$1:1$$

36- Choice A is correct
Add the first 5 numbers. $$30 + 35 + 40 + 35 + 50 = 190$$
To find the distance traveled in the next 5 hours, multiply the average by number of hours. Distance $$=$$ Average $$×$$ Rate $$= 45 × 5 = 225$$
Add both numbers. $$190 + 225 = 415$$

37- Choice C is correct
The question is this: 600 is what percent of 750?
Use percent formula:
part$$=\frac{percent}{100}×$$whole
$$600=\frac{percent}{100}×750 ⇒ 600= \frac{percent ×750}{100} ⇒ 60000 =$$percent $$×75 ⇒$$ percent$$=\frac{60000}{75}=80$$
600 is $$80 \%$$ of 750. Therefore, the discount is: $$100\% –80\%=20\%$$

38- Choice D is correct
If 24 balls are removed from the bag at random, there will be one ball in the bag.
The probability of choosing a red ball is 1 out of 25. Therefore, the probability of not choosing a red ball is 24 out of 25 and the probability of having not a red ball after removing 24 balls is the same.

39- Choice B is correct
average $$=\frac{sum of terms }{number of terms}$$
The sum of the weight of all girls is: $$25×48=1200$$ kg
The sum of the weight of all boys is: $$30×60=1800$$ kg
The sum of the weight of all students is: $$1200+1800=3000$$ kg
average$$=\frac{3000 }{55}=54.54$$

40- Choice C is correct
Write the numbers in order:
$$5, 7, 11, 13, 15, 17, 21$$
Since we have 7 numbers (7 is odd), then the median is the number in the middle, which is 13.

average$$=\frac{sum of terms }{number of terms} ⇒ 15=\frac{12+17+23+x}{4}⇒60=52+x⇒x=8$$

Use PEMDAS (order of operation):
$$-12-3×(–4)+[4-9×(-2)]÷2-5=-12+12+[4+18]÷2-5=÷2-5=11-5=6$$

$$-4x+7=19→-4x=19-7=12→x=\frac{12}{4}=3$$
Then; $$3x-4=3 (3)-4=9-4=5$$

First draw an isosceles triangle. Remember that two sides of the triangle are equal.
Let put a for the legs. Then:
a$$=12⇒$$ area of the triangle is $$=\frac{1}{2} (12×12)=\frac{144}{2}=72$$

The rate of construction company$$=\frac{15 cm}{1 min}=15 \frac{cm}{min}$$
Height of the wall after 60 minutes $$= \frac{15 cm}{1 min}×60$$ min$$=900$$ cm
Let $$x$$ be the height of wall, then $$\frac{2}{3} x=900$$cm$$→x=\frac{3×900}{2}→x=1350$$ cm$$=13.5$$ m

The question is this: 1.83 is what percent of 1.32?
Use percent formula: part $$=\frac{ percent}{100} ×$$ whole
$$1.83 = \frac{percent}{100} × 1.32 ⇒ 1.83 = \frac{percent ×1.32}{100} ⇒183 =$$ percent $$×1.32 ⇒$$ percent $$= \frac{183}{1.32} = 138$$

The relationship among all sides of special right triangle
$$30^\circ-60^\circ- 90^\circ$$ is provided in this triangle:

In this triangle, the opposite side of 30$$^\circ$$ angle is half of the hypotenuse.
Draw the shape of this question.

Let x be the length of an edge of cube, then the volume of a cube is: $$V=x^3$$
The surface area of cube is: $$SA=6x^2$$
The volume of cube A is $$\frac{1}{2}$$ of its surface area. Then:$$x^3=\frac{6x^2}{2}→x^3=3x^2$$, divide both side of the equation by $$x^2$$. Then: $$\frac{x^3}{x^2} =\frac{3x^2}{x^2} →x=3$$

The perimeter of the trapezoid is 51.
Therefore, the missing side (height) is $$= 51 – 16 – 12 – 9 = 14$$
Area of a trapezoid: A $$= \frac{1}{2} h (b_1 + b_2) = \frac{1}{2} (14) (9 + 12) = 147$$

The input value is 3. Then: $$x=3, f(x)=-x^2+5x→ f(3)=-3^2+5(3)=-9+15=6$$

Since N$$=3$$, substitute 3 for N in the equation $$\frac{x+2}{4}=-$$N, which gives $$\frac{x+2}{4}=-3$$. Multiplying both sides of $$\frac{x+2}{4}=-3$$ by 4 gives $$x+2=-12$$ and then subtract 2 from both sides of
$$x+2-2=-12-2$$ then, $$x=-12$$.

52- The answer is $$\frac{1}{3}$$ or 0.33
Write the ratio of 6a to $$5b. \frac{6a}{5b}=\frac{2}{5}$$
Use cross multiplication and then simplify.
$$6a×5=5b×2→30a=10b→a=\frac{10b}{30}=\frac{b}{3}$$
Now, find the ratio of a to b. $$\frac{a}{b}=\frac{\frac{b}{3}}{b}→\frac{b}{3}÷b=\frac{b}{3}×\frac{1}{b}=\frac{b}{3b}=\frac{1}{3}=0.33$$

## The Best Books to Ace the TASC Math Test 52% OFF

X

## How Does It Work? ### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.  ### 3. Checkout

Complete the quick and easy checkout process. ## Why Buy eBook From Effortlessmath? Save up to 70% compared to print  Help save the environment  Over 2,000 Test Prep titles available Over 80,000 happy customers Over 10,000 reviews with an average rating of 4.5 out of 5  