How to Find Slope

How to Find Slope

The slope of a line shows the direction of the line. In this article, you learn how to find the slope of a line.

Related Topics

Step by step guide to solve finding slope

  • The slope of a line represents the direction of a line on the coordinate plane.
  • A coordinate plane contains two perpendicular number lines. The horizontal line is \(x\) and the vertical line is \(y\). The point at which the two axes intersect is called the origin. An ordered pair \((x, y)\) shows the location of a point.
  • A line on the coordinate plane can be drawn by connecting two points.
  • To find the slope of a line, we need two points.
  • The slope of a line with two points A \((x_{1},y_{1})\) and B \((x_2,y_2)\) can be found by using this formula: \(\color{blue}{\frac{y_{2} \ – \ y_{1}}{x_{2} \ – \ x_{1}} =\frac{rise}{run}}\)
  • We can also find the slope of a line when we have its equation. The equation of a like is usually written in the form of: \(y=mx+b\), where \(m\) is the slope of the line and \(b\) is the \(y\)-intercept.

Finding Slope – Example 1:

Find the slope of the line through these two points: \((1,–9)\) and \((2,5) \).

Solution:

Slope \(=\frac{y_{2} \ – \ y_{1}}{x_{2} \ – \ x_{1} }\). Let \((x_{1},y_{1} )\) be \((1,- \ 9) \) and \((x_{2},y_{2} )\) be \((2,5)\). Then: slope \(=\frac{y_{2} \ – \ y_{1}}{x_{2} \ – \ x_{1} }=\frac{5 \ – \ (- \ 9)}{2 \ – \ 1}=\frac{5 \ + \ 9}{1}=\frac{14}{1}=14\)

Finding Slope – Example 2:

Find the slope of a line with these two points: \((6,1)\) and \((-2,9)\).

Solution:

Slope \(=\frac{y_{2} \ – \ y_{1}}{x_{2} \ – \ x_{1} }\). Let \((x_{1},y_{1} )\) be \((6,1) \) and \((x_{2},y_{2} )\) be \((-2,9)\). Then: slope \(=\frac{y_{2} \ – \ y_{1}}{x_{2} \ – \ x_{1} }=\frac{9 \ – \ 1}{- \ 2 \ – \ 6}=\frac{8}{-8}=\frac{1}{-1}=\ – \ 1\)

Finding Slope – Example 3:

Find the slope of a line with these two points: \((2,–10)\) and \((3,6)\).

Solution:

Slope \(=\frac{y_{2}- y_{1}}{x_{2 } – x_{1 }}\). Let \((x_{1},y_{1} )\) be \((2,-10) \) and \((x_{2},y_{2} )\) be \((3,6)\). Then: slope \(=\frac{y_{2}- y_{1}}{x_{2} – x_{1} }=\frac{6-(-10)}{3 – 2}=\frac{6+10}{1}=\frac{16}{1}=16\)

Finding Slope – Example 4:

Find the slope of the line with equation \(y=3x+6\)

Solution:

when the equation of a line is written in the form of \(y=mx+b\), \(m\) is the slope of the line. Then, in this line with equation \(y=3x+6\), the slope is 3.

Exercises for Finding Slope

Find the slope of the line through each pair of points.

  1. \(\color{blue}{(1, 1), (3, 5)}\)
  2. \(\color{blue}{(4, – 6), (– 3, – 8)}\)
  3. \(\color{blue}{(7, – 12), (5, 10)}\)
  4. \(\color{blue}{(19, 3), (20, 3)}\)
  5. \(\color{blue}{(15, 8), (– 17, 9)}\)
  6. \(\color{blue}{(6, – 12), (15, – 3)}\)

Download Finding Slope Worksheet

This image has an empty alt attribute; its file name is answer-3.png

Answers

  1. \(\color{blue}{2}\)
  2. \(\color{blue}{\frac{2}{7}}\)
  3. \(\color{blue}{-11}\)
  4. \(\color{blue}{0}\)
  5. \(\color{blue}{-\frac{1}{32}}\)
  6. \(\color{blue}{1}\)

Related to "How to Find Slope"

5 Best Reliable Calculators for School, Home, and Work
5 Best Reliable Calculators for School, Home, and Work
Top 10 Free Websites for CBEST Math Preparation
Top 10 Free Websites for CBEST Math Preparation
What Is the Best Calculator for Geometry?
What Is the Best Calculator for Geometry?
The Best Keyboards For Online Teaching
The Best Keyboards For Online Teaching
How to Study Math Effectively?
How to Study Math Effectively?
How to Get 800 on the SAT Math
How to Get 800 on the SAT Math
Best Office Chairs For Online Teachers
Best Office Chairs For Online Teachers
Top 10 Free Websites for ParaPro Math Preparation
Top 10 Free Websites for ParaPro Math Preparation
SAT Vs PSAT Tests
SAT Vs PSAT Tests
5 Best Laptops For Teachers
5 Best Laptops For Teachers

Leave a Reply

36% OFF

Download Instantly

X

How Does It Work?

Find Books

1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.

add to cart

2. Add to Cart

Add the eBook to your cart.

checkout

3. Checkout

Complete the quick and easy checkout process.

download

4. Download

Immediately receive the download link and get the eBook in PDF format.

Why Buy eBook From Effortlessmath?

Save money

Save up to 70% compared to print

Instantly download

Instantly download and access your eBook

help environment

Help save the environment

Access

Lifetime access to your eBook

Test titles

Over 2,000 Test Prep titles available

Customers

Over 80,000 happy customers

Star

Over 10,000 reviews with an average rating of 4.5 out of 5

Support

24/7 support

Anywhere

Anytime, Anywhere Access

Find Your Test

Schools, tutoring centers, instructors, and parents can purchase Effortless Math eBooks individually or in bulk with a credit card or PayPal. Find out more…