Geometry Puzzle – Challenge 76

This is a perfect math challenge for those who enjoy solving complicated mathematics and critical thinking challenges. Let's challenge your brain!

Geometry Puzzle – Challenge 76


If the perimeter of an equilateral triangle is 2x meters and its area is x square meters, then what is the length of one side of the triangle in meters?

A- \(\sqrt{3}\)

B- \(\frac{\sqrt{3}}{2}\)

C- \(2\sqrt{3}\)

D- \(\frac{2\sqrt{3}}{3}\)

E- 3

The Absolute Best Book to Challenge Your Smart Student!

Satisfied 123 Students

The correct answer is C.

The perimeter of the equilateral triangle is 2x meters. So, one side is \(\frac{2}{3}x \) meters.
The area of an equilateral triangle \(= \frac{s^2 \sqrt{3}}{4}\) (s is one side of the triangle)
The perimeter of the triangle is twice its area. So:
\(2x = 2 (\frac{s^2 \sqrt{3}}{4}) → 2x = (\frac{s^2 \sqrt{3}}{2})\)
Replace the s with \(\frac{2}{3}x\). Then:
\(2x = \frac{(\frac{2}{3} x)^2 \sqrt{3}}{2} = \frac{\frac{4}{9} x^2 \sqrt{3}}{2 }→ 4x = \frac{4}{9} x^2 \sqrt{3} → 4 = \frac{4}{9} x\sqrt{3} → 9 = x\sqrt{3}→
\frac{9}{\sqrt{3} }= x → \frac{9}{\sqrt{3} } × \frac{\sqrt{3}}{\sqrt{3} } = x → x = 3\sqrt{3}\)
Then, one side of the triangle is: \(\frac{2}{3}x =\frac{ 2}{3}(3\sqrt{3}) = 2\sqrt{3}\)

The Best Books to Ace Algebra

Satisfied 1 Students
Satisfied 92 Students
Satisfied 125 Students

Related to This Article

What people say about "Geometry Puzzle – Challenge 76 - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

45% OFF

Limited time only!

Save Over 45%

Take It Now!

SAVE $40

It was $89.99 now it is $49.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II