# How to Find the Volume of Spheres In this article, you will learn how to find volumes of Spheres in a few simple steps.

## Step by step guide to Find Volume of Spheres

A sphere is a completely round three-dimensional object like a ball or a globe. This geometric volume can be specified by a set of all points located at a distance r (radius) from a point (center). The sphere is perfectly symmetrical and has no edges or vertices.

To find the volume of the sphere, we need to have the radius of the sphere, then we can use the following relation:

Sphere volume: $$=\frac{4}{3}$$$$\times$$Pi number$$\times$$radius$$\times$$radius$$\times$$radius

If we want to write the above relation using mathematical symbols, we will have:

$$V=\frac{4}{3}\times π\times r^3$$

In fact, in this relation $$V$$ represents the volume of the sphere, and $$r$$ symbolizes the radius of the sphere in question.

### Finding Volume of Spheres Example 1:

Find the volume of a sphere whose radius is $$5 cm$$. $$(π=3.14)$$

Solution: Given: radius, $$r=5 cm$$

The volume of a sphere formula: $$V=\frac{4}{3}\times π\times r^3$$

$$r=5 cm→V=\frac{4}{3}\times π\times r^3=\frac{4}{3}\times π\times (5)^3=523.33 cm^3$$

### Finding Volume of Spheres Example 2:

Find the volume of a sphere whose diameter is $$22 cm$$. $$(π=3.14)$$

Solution: Given, diameter: $$22 cm$$

Then: radius $$=\frac{diameter}{2}=\frac{22cm}{2}=11 cm$$

The volume of a sphere formula: $$V=\frac{4}{3}\times π\times r^3$$

$$r=11 cm→V=\frac{4}{3}\times π\times r^3=\frac{4}{3}\times π\times (11)^3=5,572.45 cm^3$$

### Finding Volume of Spheres Example 3:

Find the volume of a sphere whose radius is $$2 ft$$. $$(π=3.14)$$

Solution: Given: radius, $$r=2 ft$$

The volume of a sphere formula: $$V=\frac{4}{3}\times π\times r^3$$

$$r=2 ft→V=\frac{4}{3}\times π\times r^3=\frac{4}{3}\times π\times (2)^3=33.49 ft^3$$

### Finding Volume of Spheres Example 4:

Find the volume of a sphere whose diameter is $$50 ft$$. $$(π=3.14)$$

Solution: Given, diameter: $$50 ft$$

Then: radius $$=\frac{diameter}{2}=\frac{50ft}{2}=25 ft$$

The volume of a sphere formula: $$V=\frac{4}{3}\times π\times r^3$$

$$r=11 cm→V=\frac{4}{3}\times π\times r^3=\frac{4}{3}\times π\times (25)^3=65,416.67 cm^3$$

## Exercises for Finding Volume of Spheres

### Find the volume of each sphere. $$(π=3.14)$$

1. radius$$=3.5 ft$$
2. diameter$$=13 cm$$
3. radius$$=13 cm$$
4. diameter$$=14 ft$$
5. radius$$=19 ft$$
6. diameter$$=54 ft$$
1. $$V=179.5 ft^3$$
2. $$V=1,149.76 cm^3$$
3. $$V=9,198.11 cm^3$$
4. $$V=1,436.03 ft^3$$
5. $$V=28,716.35 ft^3$$
6. $$V=82,406.16 ft^3$$ 36% OFF

X

## How Does It Work? ### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.  ### 3. Checkout

Complete the quick and easy checkout process. ## Why Buy eBook From Effortlessmath? Save up to 70% compared to print  Help save the environment  Over 2,000 Test Prep titles available Over 80,000 happy customers Over 10,000 reviews with an average rating of 4.5 out of 5  