Understanding Trigonometry: How to Calculate the Area of Triangles
The vast realm of trigonometry extends far beyond just sine, cosine, and tangent. Its principles have the power to simplify seemingly complex problems, such as finding the area of a triangle without knowing its height. By merging basic triangle area formulas with the magic of trigonometric ratios, we can unveil triangle areas in a whole new light. Intrigued? Let’s venture into the trigonometric technique to compute triangle areas.

Step-by-step Guide: Trigonometry and Area of Triangles
Basic Area of a Triangle:
The most common formula for finding the area of a triangle is:
\( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)
Introducing Trigonometry:
If two sides of a triangle and the included angle are known, the area can be determined using:
\( \text{Area} = \frac{1}{2} \times a \times b \times \sin(C) \)
Here, \(a\) and \(b\) are the two known sides, and \(C\) is the included angle between them.
Why Does This Work?:
The height in the standard formula can be expressed in terms of \(a\), \(b\), and \(C\). The height would be \(a \times \sin(C)\) (or equivalently, \(b \times \sin(A))\). By substituting this into the base-height formula, we get the trigonometric area formula.
Examples
Example 1:
Given a triangle \(ABC\) with side \(AB = 5 \text{ cm}\), side \(BC = 7 \text{ cm}\), and angle \(B = 60^\circ\), find the area of triangle \(ABC\).
Solution:
Using the trigonometric formula for area:
\( \text{Area} = \frac{1}{2} \times AB \times BC \times \sin(B) \)
\( \text{Area} = \frac{1}{2} \times 5 \text{ cm} \times 7 \text{ cm} \times \sin(60^\circ) \)
\( \text{Area} = 15.5 \text{ cm}^2 \) (approximately)
Example 2:
For triangle \(PQR\), side \(PQ = 8 \text{ cm}\), side \(QR = 10 \text{ cm}\), and angle \(Q = 45^\circ\), determine the area of triangle PQR.
Solution:
\( \text{Area} = \frac{1}{2} \times PQ \times QR \times \sin(Q) \)
\( \text{Area} = \frac{1}{2} \times 8 \text{ cm} \times 10 \text{ cm} \times \sin(45^\circ) \)
\( \text{Area} = 28.28 \text{ cm}^2 \) (approximately)
Practice Questions:
- Given triangle \(XYZ\) with \(XY = 6 \text{ cm}\), \(YZ = 9 \text{ cm}\), and angle \(Y = 30^\circ\), find its area.
- For triangle \(LMN\), if \(LM = 4 \text{ cm}\), \(MN = 5 \text{ cm}\), and angle \(M = 90^\circ\), calculate the area.

Answers:
- \( 13.5 \text{ cm}^2 \)
- \( 10 \text{ cm}^2 \)
Related to This Article
More math articles
- PSAT 8/9, PSAT 10, and PSAT/NMSQT Preview
- The Ultimate ACCUPLACER Math Formula Cheat Sheet
- Using Number Lines to Represent Rational Numbers
- Best Noise-Cancelling Headphones for Online Teaching
- 10 Most Common 6th Grade SBAC Math Questions
- 6th Grade ACT Aspire Math Practice Test Questions
- How to Graph Quadratic Functions? (+FREE Worksheet!)
- Top 10 Websites to Learn About Scholarships, Federal Aid, and Student Funding
- Continuity at a point Explained: How to Identify Discontinuities and Their Significance
- CBEST Math-Test Day Tips
What people say about "Understanding Trigonometry: How to Calculate the Area of Triangles - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.