# How to Rationalize Radical Expressions As you may know, radical expressions cannot be in the denominator, so in this article, we will teach you how to get rid of them by rationalizing radical expressions.

## A step-by-step guide to Rationalizing Radical Expressions

• Radical expressions cannot be in the denominator. (number in the bottom)
• To get rid of the radicals in the denominator, multiply both numerator and denominator by the radical in the denominator.
• If there is a radical and another integer in the denominator, multiply both numerator and denominator by the conjugate of the denominator.
• The conjugate of $$(a+b)$$ is $$(a-b)$$ and vice versa.

## Examples

### Rationalizing Radical Expressions – Example 1:

Simplify. $$\frac{5}{\sqrt{6}- 4}$$

Solution:

Multiply by the conjugate: $$\frac{\sqrt{6}+ 4}{\sqrt{6}+ 4 } →(\frac{5}{\sqrt{6}- 4 })×\frac{\sqrt{6}+ 4}{\sqrt{6}+ 4 }$$
$$(\sqrt{6}- 4)(\sqrt{6}+ 4)=-10$$
then: $$\frac{5}{\sqrt{6}- 4 }×\frac{\sqrt{6}+ 4}{\sqrt{6}+ 4 }=\frac{5(\sqrt{6}+ 4)}{-10 }$$
Use the fraction rule: $$\frac{a}{-b}=-\frac{a}{b}→\frac{5(\sqrt{6}+ 4)}{-10 }=-\frac{5(\sqrt{6}+ 4)}{10 }=-\frac{1}{2 }(\sqrt{6}+ 4)$$

### Rationalizing Radical Expressions – Example 2:

Simplify. $$\frac{2}{\sqrt{3}- 1 }$$

Solution:

Multiply by the conjugate: $$\frac{\sqrt{3}+1}{\sqrt{3}+1}$$
$$\frac{2}{\sqrt{3}-1 }×\frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{2(\sqrt{3}+1)}{2}→ =(\sqrt{3}+1)$$

### Rationalizing Radical Expressions – Example 3:

Simplify. $$\frac{1}{\sqrt{5}- 2 }$$

Solution:

Multiply by the conjugate: $$\frac{\sqrt{5}+ 2}{\sqrt{5}+ 2 } →\frac{1}{\sqrt{5}- 2 }×\frac{\sqrt{5}+ 2}{\sqrt{5}+ 2 }$$
$$(\sqrt{5}- 2)(\sqrt{5}+ 2)=1$$ then: $$\frac{1}{\sqrt{5}– 2 }×\frac{\sqrt{5}+ 2}{\sqrt{5}+ 2}=\frac{(\sqrt{5}+ 2)}{1 }= \sqrt{5}+ 2$$

### Rationalizing Radical Expressions – Example 4:

Simplify. $$\frac{4}{\sqrt{13}- 3 }$$

Solution:

Multiply by the conjugate: $$\frac{\sqrt{13}+ 3}{\sqrt{13}+ 3 } →\frac{4}{\sqrt{13}- 3 }×\frac{\sqrt{13}+ 3}{\sqrt{13}+ 3 }$$
$$(\sqrt{13}- 3)(\sqrt{13}+ 3)=4$$ then: $$\frac{4}{\sqrt{13}– 3 }×\frac{\sqrt{13}+ 3}{\sqrt{13}+ 3}=\frac{4×(\sqrt{13}+ 3)}{4 }= \sqrt{13}+ 3$$

## Exercises for Rationalizing Radical Expressions

1. $$\color{blue}{\frac{15}{\sqrt{5}-2}}$$
2. $$\color{blue}{\frac{\sqrt{3}+\sqrt{6}}{6-\sqrt{5}}}$$
3. $$\color{blue}{\frac{4+\sqrt{2}}{\sqrt{2}-\sqrt{7}}}$$
4. $$\color{blue}{\frac{2+\sqrt{8}}{\sqrt{3}-\sqrt{2}}}$$
5. $$\color{blue}{\frac{\sqrt{9c}}{\sqrt{c^5}}}$$
6. $$\color{blue}{\frac{10}{7-\sqrt{6}}}$$
1. $$\color{blue}{15(\sqrt{5}+2)}$$
2. $$\color{blue}{\frac{(\sqrt{3}+\sqrt{6})(6+\sqrt{5})}{31}}$$
3. $$\color{blue}{-\frac{4\sqrt{2}+4\sqrt{7}+2+\sqrt{14}}{5}}$$
4. $$\color{blue}{2\sqrt{3}+2\sqrt{2}+2\sqrt{6}+4}$$
5. $$\color{blue}{\frac{3}{c^2}}$$
6. $$\color{blue}{\frac{10(7+\sqrt{6})}{43}}$$ 36% OFF

X

## How Does It Work? ### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.  ### 3. Checkout

Complete the quick and easy checkout process. ## Why Buy eBook From Effortlessmath? Save up to 70% compared to print  Help save the environment  Over 2,000 Test Prep titles available Over 80,000 happy customers Over 10,000 reviews with an average rating of 4.5 out of 5  