How to Rationalize Radical Expressions? (+FREE Worksheet!)

As you may know, radical expressions cannot be in the denominator, so in this article, we will teach you how to get rid of them by rationalizing radical expressions.
Related Topics
- How to Add and Subtract Radical Expressions
- How to Multiply Radical Expressions
- How to Solve Radical Equations
- How to Simplify Radical Expressions
- How to Find Domain and Range of Radical Functions
A step-by-step guide to Rationalizing Radical Expressions
- Radical expressions cannot be in the denominator. (number in the bottom)
- To get rid of the radicals in the denominator, multiply both numerator and denominator by the radical in the denominator.
- If there is a radical and another integer in the denominator, multiply both numerator and denominator by the conjugate of the denominator.
- The conjugate of \((a+b)\) is \((a-b)\) and vice versa.
Examples
Rationalizing Radical Expressions – Example 1:
Simplify. \(\frac{5}{\sqrt{6}- 4}\)
Solution:
Multiply by the conjugate: \(\frac{\sqrt{6}+ 4}{\sqrt{6}+ 4 } →\frac{5}{\sqrt{6}- 4 }×\frac{\sqrt{6}+ 4}{\sqrt{6}+ 4 }\)
\( (\sqrt{6}- 4)(\sqrt{6}+ 4)=-10\) then: \(\frac{5}{\sqrt{6}- 4 }×\frac{\sqrt{6}+ 4}{\sqrt{6}+ 4 }=\frac{5(\sqrt{6}+ 4)}{-10 }\)
Use the fraction rule: \(\frac{a}{-b}=-\frac{a}{b}→\frac{5(\sqrt{6}+ 4)}{-10 }=-\frac{5(\sqrt{6}+ 4)}{10 }=-\frac{1}{2 }(\sqrt{6}+ 4)\)
Rationalizing Radical Expressions – Example 2:
Simplify. \(\frac{2}{\sqrt{3}- 1 }\)
Solution:
Multiply by the conjugate: \(\frac{\sqrt{3}+1}{\sqrt{3}+1}\) → \(\frac{2}{\sqrt{3}-1 }×\frac{\sqrt{3}+1}{\sqrt{3}+1}\)
\(({\sqrt{3}- 1 )}\) \(({\sqrt{3}+1 )}\) \(=2\) then: \(\frac{2}{\sqrt{3}-1 }×\frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{2 × (\sqrt{3}+1)}{2} =\sqrt{3}+1\)
Rationalizing Radical Expressions – Example 3:
Simplify. \(\frac{1}{\sqrt{5}- 2 }\)
Solution:
Multiply by the conjugate: \(\frac{\sqrt{5}+ 2}{\sqrt{5}+ 2 } →\frac{1}{\sqrt{5}- 2 }×\frac{\sqrt{5}+ 2}{\sqrt{5}+ 2 } \)
\((\sqrt{5}- 2)(\sqrt{5}+ 2)=1\) then: \(\frac{1}{\sqrt{5}– 2 }×\frac{\sqrt{5}+ 2}{\sqrt{5}+ 2}=\frac{1 × (\sqrt{5}+ 2)}{1 }= \sqrt{5}+ 2\)
Rationalizing Radical Expressions – Example 4:
Simplify. \(\frac{4}{\sqrt{13}- 3 }\)
Solution:
Multiply by the conjugate: \(\frac{\sqrt{13}+ 3}{\sqrt{13}+ 3 } →\frac{4}{\sqrt{13}- 3 }×\frac{\sqrt{13}+ 3}{\sqrt{13}+ 3 } \)
\((\sqrt{13}- 3)(\sqrt{13}+ 3)=4\) then: \(\frac{4}{\sqrt{13}– 3 }×\frac{\sqrt{13}+ 3}{\sqrt{13}+ 3}=\frac{4×(\sqrt{13}+ 3)}{4 }= \sqrt{13}+ 3\)
Exercises for Rationalizing Radical Expressions
- \(\color{blue}{\frac{15}{\sqrt{5}-2}}\)
- \(\color{blue}{\frac{\sqrt{3}+\sqrt{6}}{6-\sqrt{5}}}\)
- \(\color{blue}{\frac{4+\sqrt{2}}{\sqrt{2}-\sqrt{7}}}\)
- \(\color{blue}{\frac{2+\sqrt{8}}{\sqrt{3}-\sqrt{2}}}\)
- \(\color{blue}{\frac{\sqrt{9c}}{\sqrt{c^5}}}\)
- \(\color{blue}{\frac{10}{7-\sqrt{6}}}\)

- \(\color{blue}{15(\sqrt{5}+2)}\)
- \(\color{blue}{\frac{(\sqrt{3}+\sqrt{6})(6+\sqrt{5})}{31}}\)
- \(\color{blue}{-\frac{4\sqrt{2}+4\sqrt{7}+2+\sqrt{14}}{5}}\)
- \(\color{blue}{2\sqrt{3}+2\sqrt{2}+2\sqrt{6}+4}\)
- \(\color{blue}{\frac{3}{c^2}}\)
- \(\color{blue}{\frac{10(7+\sqrt{6})}{43}}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- Full-Length 7th Grade PSSA Math Practice Test-Answers and Explanations
- 7th Grade NJSLA Math Worksheets: FREE & Printable
- How to Graph Inverse of the Cosine Function?
- 10 Most Common 5th Grade FSA Math Questions
- How to Add and Subtract Decimals? (+FREE Worksheet!)
- The Best Teacher Desks in 2024
- Algebra Puzzle – Challenge 46
- Mastering the Midpoint & Distance on the Number Line
- The Ultimate 6th Grade TNReady Math Course (+FREE Worksheets)
- How to Create a Proportion? (+FREE Worksheet!)
What people say about "How to Rationalize Radical Expressions? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.