How to Find Inverse of a Function? (+FREE Worksheet!)
Since an inverse function essentially undoes the effects of the original function, you need to learn how to use them. Therefore, in this article, we have tried to acquaint you with the method of using inverse functions.
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
Related Topics
- How to Add and Subtract Functions
- How to Multiply and Dividing Functions
- How to Solve Function Notation
- How to Solve Composition of Functions
Definition of Function Inverses
- An inverse function is a function that reverses another function: if the function \(f\) applied to an input \(x\) gives a result of \(y\), then applying its inverse function \(g\) to \(y\) gives the result \(x\).
\(f(x)=y\) if and only if \(g(y)=x\) - The inverse function of \(f(x)\) is usually shown by \(f^{-1} (x)\).
Examples
Function Inverses – Example 1:
Find the inverse of the function: \(f(x)=2x-1\)
Solution:
First, replace \(f(x)\) with \(y: y=2x-1\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x: x=2y-1\), now, solve for \(y: x=2y-1→x+1=2y→\frac{1}{2} x+\frac{1}{2}=y\), Finally replace \(y\) with \(f^{-1} (x): f^{-1} (x)=\frac{1}{2} x+\frac{1}{2}\)
Function Inverses – Example 2:
Find the inverse of the function: \(g(x)=\frac{1}{5} x+3\)
Solution:
First, replace \(g(x)\) with \(y:\) \(y=\frac{1}{5} x+3\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\)\(x=\frac{1}{5} y+3\) , now, solve for \(y: x=\frac{1}{5} y+3 → x-3=\frac{1}{5} y→5(x-3)=y → 5x-15=y\), Finally replace \(y\) with \(g^{-1}(x) : g^{-1}(x)=5x-15\)
Function Inverses – Example 3:
Find the inverse of the function: \(h(x)=\sqrt{x}+6\)
Solution:
First, replace \(h(x)\) with \(y:\) \(y=\sqrt{x}+6\), then, replace all \(x^{‘}s\) with y and all \(y^{‘}s\) with \(x : x=\sqrt{y}+6\), now, solve for \(y :\) \(x=\sqrt{y}+6\) → \(x-6=\sqrt{y}→(x-6)^2=\sqrt{y}^2→x^2-12x+36=y\) , Finally replace \(y\) with \(h^{-1}(x): h^{-1} (x)=x^2-12x+36\)
Function Inverses – Example 4:
Find the inverse of the function: \(g(x)=\frac{x+5}{4}\)
Solution:
First, replace \(g(x)\) with \(y :\) \(y=\frac{x+5}{4}\) , then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\) \(x=\frac{y+5}{4} \), now, solve for \(y:\) \(x=\frac{y+5}{4} \) → \(4x=y+5→4x-5=y\), Finally replace \(y\) with \( g^{-1}(x) : g^{-1}(x)=4x-5\)
Exercises for Function Inverses
Find the inverse of each function.
- \(\color{blue}{f(x)=\frac{1}{x}-3}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{g(x)=2x^3-5}\)
\(\color{blue}{g^{-1} (x)=}\)________ - \(\color{blue}{h(x)=10x}\)
\(\color{blue}{h^{-1} (x)=}\)________ - \(\color{blue}{f(x)=\sqrt{x}-4}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{f(x)=3x^2+2}\)
\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{h(x)=22x}\)
\(\color{blue}{h^{-1} (x)=}\)________
- \(\color{blue}{\frac{1}{x+3}}\)
- \(\color{blue}{\sqrt[3]{\frac{x+5}{2}}}\)
- \(\color{blue}{\frac{x}{10}}\)
- \(\color{blue}{x^2+8x+16}\)
- \(\color{blue}{\sqrt{\frac{x-2}{3}}}\), \(\color{blue}{-\sqrt{\frac{x-2}{3}}}\)
- \(\color{blue}{\frac{x}{22}}\)
Related to This Article
More math articles
- Grade 3 Math: Multiplication and Division Relationship
- Remainder Riddles: How to Decipher Division with One-digit Divisors
- Product Projections: How to Swiftly Estimate Decimal Multiplications
- How to Unravel the Vectorial Realm: A Comprehensive Guide to Vector Applications in Mathematics”
- Top 5 Laptop Stands to Help You Teach Online
- Top 10 4th Grade Georgia Milestones Assessment System Math Practice Questions
- Top 5 GED Math Study Guides
- 9 Best Math Websites for Teachers and Students
- Estimating and Rounding
- The Most Effective Methods for Learning Math Facts and Improving Number Sense





































What people say about "How to Find Inverse of a Function? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.