# How to Find Inverse of a Function? (+FREE Worksheet!)

Since an inverse function essentially undoes the effects of the original function, you need to learn how to use them. Therefore, in this article, we have tried to acquaint you with the method of using inverse functions.

## Related Topics

- How to Add and Subtract Functions
- How to Multiply and Dividing Functions
- How to Solve Function Notation
- How to Solve Composition of Functions

## Definition of Function Inverses

- An inverse function is a function that reverses another function: if the function \(f\) applied to an input \(x\) gives a result of \(y\), then applying its inverse function \(g\) to \(y\) gives the result \(x\).

\(f(x)=y\) if and only if \(g(y)=x\) - The inverse function of \(f(x)\) is usually shown by \(f^{-1} (x)\).

## Examples

### Function Inverses – Example 1:

Find the inverse of the function: \(f(x)=2x-1\)

**Solution:**

First, replace \(f(x)\) with \(y: y=2x-1\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x: x=2y-1\), now, solve for \(y: x=2y-1→x+1=2y→\frac{1}{2} x+\frac{1}{2}=y\), Finally replace \(y\) with \(f^{-1} (x): f^{-1} (x)=\frac{1}{2} x+\frac{1}{2}\)

### Function Inverses – Example 2:

Find the inverse of the function: \(g(x)=\frac{1}{5} x+3\)

**Solution:**

First, replace \(g(x)\) with \(y:\) \(y=\frac{1}{5} x+3\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\)\(x=\frac{1}{5} y+3\) , now, solve for \(y: x=\frac{1}{5} y+3 → x-3=\frac{1}{5} y→5(x-3)=y → 5x-15=y\), Finally replace \(y\) with \(g^{-1}(x) : g^{-1}(x)=5x-15\)

### Function Inverses – Example 3:

Find the inverse of the function: \(h(x)=\sqrt{x}+6\)

**Solution:**

First, replace \(h(x)\) with \(y:\) \(y=\sqrt{x}+6\), then, replace all \(x^{‘}s\) with y and all \(y^{‘}s\) with \(x : x=\sqrt{y}+6\), now, solve for \(y :\) \(x=\sqrt{y}+6\) → \(x-6=\sqrt{y}→(x-6)^2=\sqrt{y}^2→x^2-12x+36=y\) , Finally replace \(y\) with \(h^{-1}(x): h^{-1} (x)=x^2-12x+36\)

### Function Inverses – Example 4:

Find the inverse of the function: \(g(x)=\frac{x+5}{4}\)

**Solution:**

First, replace \(g(x)\) with \(y :\) \(y=\frac{x+5}{4}\) , then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\) \(x=\frac{y+5}{4} \), now, solve for \(y:\) \(x=\frac{y+5}{4} \) → \(4x=y+5→4x-5=y\), Finally replace \(y\) with \( g^{-1}(x) : g^{-1}(x)=4x-5\)

## Exercises for Function Inverses

### Find the inverse of each function.

- \(\color{blue}{f(x)=\frac{1}{x}-3}\)

\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{g(x)=2x^3-5}\)

\(\color{blue}{g^{-1} (x)=}\)________ - \(\color{blue}{h(x)=10x}\)

\(\color{blue}{h^{-1} (x)=}\)________ - \(\color{blue}{f(x)=\sqrt{x}-4}\)

\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{f(x)=3x^2+2}\)

\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{h(x)=22x}\)

\(\color{blue}{h^{-1} (x)=}\)________

- \(\color{blue}{\frac{1}{x+3}}\)
- \(\color{blue}{\sqrt[3]{\frac{x+5}{2}}}\)
- \(\color{blue}{\frac{x}{10}}\)
- \(\color{blue}{x^2+8x+16}\)
- \(\color{blue}{\sqrt{\frac{x-2}{3}}}\), \(\color{blue}{-\sqrt{\frac{x-2}{3}}}\)
- \(\color{blue}{\frac{x}{22}}\)

### More math articles

- 7th Grade SC Ready Math Worksheets: FREE & Printable
- 6th Grade PARCC Math FREE Sample Practice Questions
- How to graph Scatter Plots? (+FREE Worksheet!)
- PSAT 10 Math Formulas
- FREE 5th Grade NYSE Math Practice Test
- Geometry Puzzle – Challenge 64
- 6th Grade OSTP Math Worksheets: FREE & Printable
- Standard Form of a Circle
- 10 Most Common 8th Grade FSA Math Questions
- 5th Grade Common Core Math Practice Test Questions

## What people say about "How to Find Inverse of a Function? (+FREE Worksheet!)"?

No one replied yet.