# How to Find Inverse of a Function? (+FREE Worksheet!)

Since an inverse function essentially undoes the effects of the original function, you need to learn how to use them. Therefore, in this article, we have tried to acquaint you with the method of using inverse functions.

## Related Topics

- How to Add and Subtract Functions
- How to Multiply and Dividing Functions
- How to Solve Function Notation
- How to Solve Composition of Functions

## Definition of Function Inverses

- An inverse function is a function that reverses another function: if the function \(f\) applied to an input \(x\) gives a result of \(y\), then applying its inverse function \(g\) to \(y\) gives the result \(x\).

\(f(x)=y\) if and only if \(g(y)=x\) - The inverse function of \(f(x)\) is usually shown by \(f^{-1} (x)\).

## Examples

### Function Inverses – Example 1:

Find the inverse of the function: \(f(x)=2x-1\)

**Solution:**

First, replace \(f(x)\) with \(y: y=2x-1\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x: x=2y-1\), now, solve for \(y: x=2y-1→x+1=2y→\frac{1}{2} x+\frac{1}{2}=y\), Finally replace \(y\) with \(f^{-1} (x): f^{-1} (x)=\frac{1}{2} x+\frac{1}{2}\)

### Function Inverses – Example 2:

Find the inverse of the function: \(g(x)=\frac{1}{5} x+3\)

**Solution:**

First, replace \(g(x)\) with \(y:\) \(y=\frac{1}{5} x+3\), then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\)\(x=\frac{1}{5} y+3\) , now, solve for \(y: x=\frac{1}{5} y+3 → x-3=\frac{1}{5} y→5(x-3)=y → 5x-15=y\), Finally replace \(y\) with \(g^{-1}(x) : g^{-1}(x)=5x-15\)

### Function Inverses – Example 3:

Find the inverse of the function: \(h(x)=\sqrt{x}+6\)

**Solution:**

First, replace \(h(x)\) with \(y:\) \(y=\sqrt{x}+6\), then, replace all \(x^{‘}s\) with y and all \(y^{‘}s\) with \(x : x=\sqrt{y}+6\), now, solve for \(y :\) \(x=\sqrt{y}+6\) → \(x-6=\sqrt{y}→(x-6)^2=\sqrt{y}^2→x^2-12x+36=y\) , Finally replace \(y\) with \(h^{-1}(x): h^{-1} (x)=x^2-12x+36\)

### Function Inverses – Example 4:

Find the inverse of the function: \(g(x)=\frac{x+5}{4}\)

**Solution:**

First, replace \(g(x)\) with \(y :\) \(y=\frac{x+5}{4}\) , then, replace all \(x^{‘}s\) with \(y\) and all \(y^{‘}s\) with \(x :\) \(x=\frac{y+5}{4} \), now, solve for \(y:\) \(x=\frac{y+5}{4} \) → \(4x=y+5→4x-5=y\), Finally replace \(y\) with \( g^{-1}(x) : g^{-1}(x)=4x-5\)

## Exercises for Function Inverses

### Find the inverse of each function.

- \(\color{blue}{f(x)=\frac{1}{x}-3}\)

\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{g(x)=2x^3-5}\)

\(\color{blue}{g^{-1} (x)=}\)________ - \(\color{blue}{h(x)=10x}\)

\(\color{blue}{h^{-1} (x)=}\)________ - \(\color{blue}{f(x)=\sqrt{x}-4}\)

\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{f(x)=3x^2+2}\)

\(\color{blue}{f^{-1} (x)=}\)________ - \(\color{blue}{h(x)=22x}\)

\(\color{blue}{h^{-1} (x)=}\)________

- \(\color{blue}{\frac{1}{x+3}}\)
- \(\color{blue}{\sqrt[3]{\frac{x+5}{2}}}\)
- \(\color{blue}{\frac{x}{10}}\)
- \(\color{blue}{x^2+8x+16}\)
- \(\color{blue}{\sqrt{\frac{x-2}{3}}}\), \(\color{blue}{-\sqrt{\frac{x-2}{3}}}\)
- \(\color{blue}{\frac{x}{22}}\)

### More math articles

- Transformation Using Matrices
- 3rd Grade MEAP Math FREE Sample Practice Questions
- How to Prepare for the ISEE Lower Level Math Test?
- 4 Perfect Tablets for Note-Taking in 2023
- 5th Grade Wisconsin Forward Math Worksheets: FREE & Printable
- A Comprehensive Collection of Free PERT Math Practice Tests
- 4th Grade MCAS Math FREE Sample Practice Questions
- Top 10 DAT Quantitative Reasoning Practice Questions
- ParaPro Math FREE Sample Practice Questions
- How to Graph Inverse of the Cosine Function?

## What people say about "How to Find Inverse of a Function? (+FREE Worksheet!)"?

No one replied yet.