# Angles and Angle Measure Learn how to convert degrees to radians or radians to degrees by following a step-by-step guide.

## Step by step guide to solve angles and angle measure problems

• To convert degrees to radians, use this formula: $$\color{blue}{Radians = Degrees \ × \frac{π}{180}}$$
• To convert radians to degrees, use this formula: $$\color{blue}{Degrees =Radians ×\frac{180}{π}}$$

### Example 1:

Convert $$120$$ degrees to radians.

Solution:

Use this formula: Radians $$=$$ Degrees $$×\frac{π}{180}$$
Radians $$=120×\frac{π}{180}=\frac{120π}{180}=\frac{2π}{3}$$

### Example 2:

Convert $$\frac{\pi}{3}$$ to degrees.

Solution:

Use this formula: Degrees $$=$$ Radians $$×\frac{180}{π}$$
Radians $$=\frac{π}{3}×\frac{180}{π}=\frac{180π}{3π}=60$$

### Example 3:

Convert $$150$$ degrees to radians.

Solution:

Use this formula: Radians $$=$$ Degrees $$×\frac{π}{180}$$
Radians $$=150×\frac{π}{180}=\frac{150π}{180}=\frac{5π}{6}$$

### Example 4:

Convert $$\frac{2π}{3}$$ to degrees.

Solution:

Use this formula: Degrees $$=$$ Radians $$×\frac{ 180}{ π }$$
Radians $$=\frac{2π}{3}×\frac{180}{π}=\frac{360π}{3π}=120$$

## Exercises

### Convert each degree measure into radians and convert each radian measure into degrees.

• $$\color{blue}{-150^\circ}$$
• $$\color{blue}{420^\circ}$$
• $$\color{blue}{300^\circ}$$
• $$\color{blue}{\frac{5π}{9}=}$$
• $$\color{blue}{-\frac{π}{3}=}$$
• $$\color{blue}{\frac{13π}{6}=}$$

• $$\color{blue}{-\frac{5π}{6}}$$
• $$\color{blue}{\frac{7π}{3}}$$
• $$\color{blue}{\frac{5π}{3}}$$
• $$\color{blue}{100^\circ}$$
• $$\color{blue}{-60^\circ}$$
• $$\color{blue}{390^\circ}$$ ## How Does It Work? ### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.  ### 3. Checkout

Complete the quick and easy checkout process. ## Why Buy eBook From Effortlessmath? Save up to 70% compared to print  Help save the environment  Over 2,000 Test Prep titles available Over 80,000 happy customers Over 10,000 reviews with an average rating of 4.5 out of 5  