How to Add and Subtract Rational Expressions? (+FREE Worksheet!)

By knowing a few simple rules you can easily add and subtract Rational Expressions. In this blog post, we will introduce you step by step guide on how to add and subtract rational expressions.
Related Topics
- How to Multiply Rational Expressions
- How to Divide Rational Expressions
- How to Solve Rational Equations
- How to Simplify Complex Fractions
- How to Graph Rational Expressions
A step-by-step guide to Adding and Subtracting Rational Expressions
For adding and subtracting rational expressions:
- Find the least common denominator (LCD).
- Write each expression using the LCD.
- Add or subtract the numerators.
- Simplify as needed
Examples
Adding and Subtracting Rational Expressions – Example 1:
Solve: \(\frac{4}{2x+3}+\frac{x-2 }{2x+3}=\)
Solution:
The denominators are equal. Then, use fractions addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{4}{2x+3}+\frac{x-2}{2x+3}=\frac{4+(x-2) }{2x+3}=\frac{x+2}{2x+3}\)
Adding and Subtracting Rational Expressions – Example 2:
Solve \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}\)=
Solution:
Find the least common denominator of\( (x-5)\) and \((x+6): (x-5)(x+6) \)
Then: \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}=\frac{(x+4)(x+6)}{(x-5)(x+6)}+\frac{(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}\)
Expand: \((x+4)(x+6)+(x-4)(x-5)=2x^2+x+44\)
Then: \(\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{2x^2+x+44}{(x +6)(x-5)}=\frac{2x^2+x+44}{x^2+x-30}\)
Adding and Subtracting Rational Expressions – Example 3:
Solve: \(\frac{3}{x+4}+\frac{x-2 }{x+4}\)=
Solution:
Use fraction addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{3}{x+4}+\frac{x-2}{x+4}=\frac{3+(x-2) }{x+4}=\frac{x+1}{x+4}\)
Adding and Subtracting Rational Expressions – Example 4:
Solve: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}\)=
Solution:
Least common denominator of \((x-8)\) and \((x+6): (x-8)(x+6)\)
Then: \(\frac{(x+4)(x+6)}{(x-8)(x+6)}+\frac{x(x-8)}{(x + 6)(x-8)}=\frac{(x+4)(x+6)+x(x-8)}{(x + 6)(x-8)}\)
Expand: \((x+4)(x+6)+x(x-8)=2x^2+2x+24\)
Then: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}=\frac{2x^2+2x+24}{(x +6)(x-8)}\)
Exercises for Simplifying Fractions
Add and Subtract Rational Expressions.
- \(\color{blue}{\frac{3}{x+1}-\frac{4x}{x+1}=}\)
- \(\color{blue}{\frac{x+8}{x+1}+\frac{x-9}{x+2}=}\)
- \(\color{blue}{\frac{6x}{x+5}+\frac{x+2}{x+7}=}\)
- \(\color{blue}{\frac{15}{x+6}-\frac{x+1}{x^{2}-36}=}\)
- \(\color{blue}{\frac{x+4}{x+3}-\frac{5x}{x-3}=}\)
- \(\color{blue}{\frac{x+8}{x-4}+\frac{x-5}{x^{2}-16}=}\)

- \(\color{blue}{\frac{3-4x}{x+1}}\)
- \(\color{blue}{\frac{2x^2+2x+7}{(x+1)(x+2)}}\)
- \(\color{blue}{\frac{7x^2+49x+10}{(x+5)(x+7)}}\)
- \(\color{blue}{\frac{14x-91}{(x+6)(x-6)}}\)
- \(\color{blue}{\frac{-4x^2-14x-12}{(x+3)(x-3)}}\)
- \(\color{blue}{\frac{x^2+13x+27}{(x+4)(x-4)}}\)
Related to This Article
More math articles
- Word Problems Involving Writing a Ratio
- What is a Perfect SAT Score?
- Top 10 TExES Core Subjects EC-6 Math Practice Questions
- How to Solve Word Problems Involving Multiplying Mixed Numbers?
- Detour of Variable Changes: A Complete Exploration of Related Rates
- Improving Your Math in College: What You Should Do
- A Deep Dive Into The World Of Limits: Limit Laws
- Best Calculator For 8th Grade Students
- A Comprehensive Collection of Free CLEP College Algebra Practice Tests
- 10 Most Common HiSET Math Questions
What people say about "How to Add and Subtract Rational Expressions? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.