How to Divide Rational Expressions? (+FREE Worksheet!)
Dividing Rational Expressions, divide a Rational Expression by another one, can be complicated. In this blog post, you will learn how to divide rational expressions into a few simple steps.
Related Topics
- How to Add and Subtract Rational Expressions
- How to Multiply Rational Expressions
- How to Solve Rational Equations
- How to Simplify Complex Fractions
- How to Graph Rational Expressions
Method of Dividing Rational Expressions
- To divide rational expression, use the same method we use for dividing fractions. (Keep, Change, Flip)
- Keep the first rational expression, change the division sign to multiplication, and flip the numerator and denominator of the second rational expression. Then, multiply numerators and multiply denominators. Simplify as needed.
Examples
Dividing Rational Expressions – Example 1:
\(\frac{x+2}{3x}÷\frac{x^2+5x+6}{3x^2+3x}\)=
Solution:
Use fractions division rule: \(\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}×\frac{d}{c}=\frac{a×d}{b×c}\)
\(\frac{x+2}{3x}÷\frac{x^2+5x+6}{3x^2+3x}=\frac{x+2}{3x}×\frac{3x^2+3x}{x^2+5x+6}=\frac{(x+2)(3x^2+3x)}{(3x)(x^2+5x+6)}\)
Now, factorize the expressions \(3x^2+3x\) and \((x^2+5x+6)\).
Then: \(3x^2+3x=3x(x+1)\) and \(x^2+5x+6=(x+2)(x+3)\)
Simplify: \(\frac{(x+2)(3x^2+3x)}{(3x)(x^2+5x+6)} =\frac{(x+2)(3x)(x+1)}{(3x)(x+2)(x+3)}\), cancel common factors. Then: \(\frac{(x+2)(3x)(x+1)}{(3x)(x+2)(x+3)}=\frac{x+1}{x+3}\)
Dividing Rational Expressions – Example 2:
\(\frac{5x}{x + 3}÷\frac{x}{2x + 6}\)=
Solution:
Use fractions division rule: \(\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}×\frac{d}{c}=\frac{a×d}{b×c}\).
Then: \(\frac{5x}{x + 3}÷\frac{x}{2x + 6}=\frac{5x}{x + 3}×\frac{2x + 6}{x}=\frac{5x(2x + 6)}{x(x+3)}\)
Now, factorize the expressions \(2x+6\), then: \(2(x+3)\)
Simplify: \(\frac{5x(2x + 6)}{x(x+3)}\) =\(\frac{5x×2(x+3)}{x(x+3)}\)
Cancel common factor: \(\frac{5x×2(x+3)}{x(x+3)}=\frac{10x(x+3)}{x(x+3)}=10\)
Dividing Rational Expressions – Example 3:
\(\frac{2x}{5}÷\frac{8}{7}=\)
Solution:
\(\frac{2x}{5}÷\frac{8}{7}=\frac{\frac{2x}{5}}{\frac{8}{7}}\) , Use Divide fractions rules: \(\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a . d}{b . c}\)
\(\frac{\frac{2x}{5}}{\frac{8}{7}}=\frac{(2x)×7}{8×5}=\frac{14x}{40}=\frac{7x}{20}\)
Dividing Rational Expressions – Example 4:
\(\frac{6x}{x + 2}÷\frac{x}{6x + 12}\)=
Solution:
\(\frac{\frac{6x}{x + 2}}{\frac{x}{6x + 12}}\) , Use Divide fractions rules: \(\frac{(6x)(6x+12)}{(x)(x+2)}\)
Now, factorize the expressions \(6x+12\), then: \(6(x+2)\)
Simplify: \(\frac{(6x)(6x+12)}{(x)(x+2)}\) = \(\frac{(6x) × 6(x+2)}{(x)(x+2)}\)
Cancel common fraction: \(\frac{(6x) × 6(x+2)}{(x)(x+2) }\) \(=\frac{36(x+2)}{(x+2)}=36\)
Exercises for Dividing Rational Expressions
Divide Rational Expressions.
- \(\color{blue}{\frac{2x}{7}÷\frac{4}{3}=}\)
- \(\color{blue}{\frac{3}{5x}÷\frac{9}{2x}=}\)
- \(\color{blue}{\frac{7x}{x+6}÷\frac{2}{x+6}=}\)
- \(\color{blue}{\frac{20x^2}{x-1}÷\frac{4x}{x+2}=}\)
- \(\color{blue}{\frac{2x-3}{x+4}÷\frac{5}{6x+24}=}\)
- \(\color{blue}{\frac{x+5}{4}÷\frac{x^2-25}{8}=}\)
- \(\color{blue}{\frac{3x}{14}}\)
- \(\color{blue}{\frac{2}{15}}\)
- \(\color{blue}{\frac{7x}{2}}\)
- \(\color{blue}{\frac{5x(x+2)}{x-1}}\)
- \(\color{blue}{\frac{6(2x-3)}{5}}\)
- \(\color{blue}{\frac{2}{x-5}}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- How to Find Missing Angels in Quadrilateral Shapes? (+FREE Worksheet!)
- How to Determine Segment Measures in Circles
- How to Prepare for the Next-Generation ACCUPLACER Math Test?
- Top 10 Pre-Algebra Practice Questions
- What Does SHSAT Stand for?
- What is the Side Splitter Theorem? A Complete Introduction and Exploration
- The Fascinating Applications of Algebraic Manipulation in Limits
- Top 10 TASC Math Practice Questions
- Essential Calculator Tools You Didn’t Know You Needed
- 10 Most Common PSAT Math Questions
What people say about "How to Divide Rational Expressions? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.