# How to Divide Rational Expressions

Dividing Rational Expressions, divide a Rational Expression by another one, can be complicated. In this blog post, you will learn how to divide rational expressions in a few simple steps.

## Method of Dividing Rational Expressions

• To divide rational expression, use the same method we use for dividing fractions. (Keep, Change, Flip)
• Keep the first rational expression, change the division sign to multiplication, and flip the numerator and denominator of the second rational expression. Then, multiply numerators and multiply denominators. Simplify as needed.

## Examples

### Dividing Rational Expressions – Example 1:

$$\frac{x+2}{3x}÷\frac{x^2+5x+6}{3x^2+3x}$$=

Solution:

Use fractions division rule: $$\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}×\frac{d}{c}=\frac{a×d}{b×c}$$
$$\frac{x+2}{3x}÷\frac{x^2+5x+6}{3x^2+3x}=\frac{x+2}{3x}×\frac{3x^2+3x}{x^2+5x+6}=\frac{(x+2)(3x^2+3x)}{(3x)(x^2+5x+6)}$$
Now, factorize the expressions $$3x^2+3x$$ and $$(x^2+5x+6)$$.
Then: $$3x^2+3x=3x(x+1)$$ and $$x^2+5x+6=(x+2)(x+3)$$
Simplify: $$\frac{(x+2)(3x^2+3x)}{(3x)(x^2+5x+6)} =\frac{(x+2)(3x)(x+1)}{(3x)(x+2)(x+3)}$$, cancel common factors. Then: $$\frac{(x+2)(3x)(x+1)}{(3x)(x+2)(x+3)}=\frac{x+1}{x+3}$$

### Dividing Rational Expressions – Example 2:

$$\frac{5x}{x + 3}÷\frac{x}{2x + 6}$$=

Solution:

Use fractions division rule: $$\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}×\frac{d}{c}=\frac{a×d}{b×c}$$.
Then: $$\frac{5x}{x + 3}÷\frac{x}{2x + 6}=\frac{5x}{x + 3}×\frac{2x + 6}{x}=\frac{5x(2x + 6)}{x(x+3)}=\frac{5x×2(x+3)}{x(x+3)}$$
Cancel common factor: $$\frac{5x×2(x+3)}{x(x+3)}=\frac{10x(x+3)}{x(x+3)}=10$$

### Dividing Rational Expressions – Example 3:

$$\frac{2x}{5}÷\frac{8}{7}=$$

Solution:

$$\frac{2x}{5}÷\frac{8}{7}=\frac{\frac{2x}{5}}{\frac{8}{7}}$$ , Use Divide fractions rules: $$\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a . d}{b . c}$$
$$\frac{\frac{2x}{5}}{\frac{8}{7}}=\frac{(2x)×7}{8×5}=\frac{14x}{40}=\frac{7x}{20}$$

### Dividing Rational Expressions – Example 4:

$$\frac{6x}{x + 2}÷\frac{x}{6x + 12}$$=

Solution:

$$\frac{\frac{6x}{x + 2}}{\frac{x}{6x + 12}}$$ , Use Divide fractions rules: $$\frac{(6x)(6x+12)}{(x)(x+2)}$$
Cancel common fraction: $$\frac{(6x)(6x+12)}{(x)(x+2)}=\frac{36(x+2)}{(x+2)}=36$$

## Exercises for Dividing Rational Expressions

### Divide Rational Expressions.

1. $$\color{blue}{\frac{2x}{7}÷\frac{4}{3}=}$$
2. $$\color{blue}{\frac{3}{5x}÷\frac{9}{2x}=}$$
3. $$\color{blue}{\frac{7x}{x+6}÷\frac{2}{x+6}=}$$
4. $$\color{blue}{\frac{20x^2}{x-1}÷\frac{4x}{x+2}=}$$
5. $$\color{blue}{\frac{2x-3}{x+4}÷\frac{5}{6x+24}=}$$
6. $$\color{blue}{\frac{x+5}{4}÷\frac{x^2-25}{8}=}$$
1. $$\color{blue}{\frac{3x}{14}}$$
2. $$\color{blue}{\frac{2}{15}}$$
3. $$\color{blue}{\frac{7x}{2}}$$
4. $$\color{blue}{\frac{5x(x+2)}{x-1}}$$
5. $$\color{blue}{\frac{6(2x-3)}{5}}$$
6. $$\color{blue}{\frac{2}{x-5}}$$

36% OFF

X

## How Does It Work?

### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.

### 3. Checkout

Complete the quick and easy checkout process.

## Why Buy eBook From Effortlessmath?

Save up to 70% compared to print

Help save the environment