# How to Divide Rational Expressions? (+FREE Worksheet!)

Dividing Rational Expressions, divide a Rational Expression by another one, can be complicated. In this blog post, you will learn how to divide rational expressions into a few simple steps.

## Related Topics

- How to Add and Subtract Rational Expressions
- How to Multiply Rational Expressions
- How to Solve Rational Equations
- How to Simplify Complex Fractions
- How to Graph Rational Expressions

## Method of Dividing Rational Expressions

- To divide rational expression, use the same method we use for dividing fractions. (Keep, Change, Flip)
- Keep the first rational expression, change the division sign to multiplication, and flip the numerator and denominator of the second rational expression. Then, multiply numerators and multiply denominators. Simplify as needed.

## Examples

### Dividing Rational Expressions – Example 1:

\(\frac{x+2}{3x}÷\frac{x^2+5x+6}{3x^2+3x}\)=

**Solution:**

Use fractions division rule: \(\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}×\frac{d}{c}=\frac{a×d}{b×c}\)

\(\frac{x+2}{3x}÷\frac{x^2+5x+6}{3x^2+3x}=\frac{x+2}{3x}×\frac{3x^2+3x}{x^2+5x+6}=\frac{(x+2)(3x^2+3x)}{(3x)(x^2+5x+6)}\)

Now, factorize the expressions \(3x^2+3x\) and \((x^2+5x+6)\).

Then: \(3x^2+3x=3x(x+1)\) and \(x^2+5x+6=(x+2)(x+3)\)

Simplify: \(\frac{(x+2)(3x^2+3x)}{(3x)(x^2+5x+6)} =\frac{(x+2)(3x)(x+1)}{(3x)(x+2)(x+3)}\), cancel common factors. Then: \(\frac{(x+2)(3x)(x+1)}{(3x)(x+2)(x+3)}=\frac{x+1}{x+3}\)

### Dividing Rational Expressions – Example 2:

\(\frac{5x}{x + 3}÷\frac{x}{2x + 6}\)=

**Solution:**

Use fractions division rule: \(\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}×\frac{d}{c}=\frac{a×d}{b×c}\).

Then: \(\frac{5x}{x + 3}÷\frac{x}{2x + 6}=\frac{5x}{x + 3}×\frac{2x + 6}{x}=\frac{5x(2x + 6)}{x(x+3)}\)

Now, factorize the expressions \(2x+6\), then: \(2(x+3)\)

Simplify: \(\frac{5x(2x + 6)}{x(x+3)}\) =\(\frac{5x×2(x+3)}{x(x+3)}\)

Cancel common factor: \(\frac{5x×2(x+3)}{x(x+3)}=\frac{10x(x+3)}{x(x+3)}=10\)

### Dividing Rational Expressions – Example 3:

\(\frac{2x}{5}÷\frac{8}{7}=\)

**Solution:**

\(\frac{2x}{5}÷\frac{8}{7}=\frac{\frac{2x}{5}}{\frac{8}{7}}\) , Use Divide fractions rules: \(\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a . d}{b . c}\)

\(\frac{\frac{2x}{5}}{\frac{8}{7}}=\frac{(2x)×7}{8×5}=\frac{14x}{40}=\frac{7x}{20}\)

### Dividing Rational Expressions – Example 4:

\(\frac{6x}{x + 2}÷\frac{x}{6x + 12}\)=

**Solution:**

\(\frac{\frac{6x}{x + 2}}{\frac{x}{6x + 12}}\) , Use Divide fractions rules: \(\frac{(6x)(6x+12)}{(x)(x+2)}\)

Now, factorize the expressions \(6x+12\), then: \(6(x+2)\)

Simplify: \(\frac{(6x)(6x+12)}{(x)(x+2)}\) = \(\frac{(6x) × 6(x+2)}{(x)(x+2)}\)

Cancel common fraction: \(\frac{(6x) × 6(x+2)}{(x)(x+2) }\) \(=\frac{36(x+2)}{(x+2)}=36\)

## Exercises for Dividing Rational Expressions

### Divide Rational Expressions.

- \(\color{blue}{\frac{2x}{7}÷\frac{4}{3}=}\)
- \(\color{blue}{\frac{3}{5x}÷\frac{9}{2x}=}\)
- \(\color{blue}{\frac{7x}{x+6}÷\frac{2}{x+6}=}\)
- \(\color{blue}{\frac{20x^2}{x-1}÷\frac{4x}{x+2}=}\)
- \(\color{blue}{\frac{2x-3}{x+4}÷\frac{5}{6x+24}=}\)
- \(\color{blue}{\frac{x+5}{4}÷\frac{x^2-25}{8}=}\)

- \(\color{blue}{\frac{3x}{14}}\)
- \(\color{blue}{\frac{2}{15}}\)
- \(\color{blue}{\frac{7x}{2}}\)
- \(\color{blue}{\frac{5x(x+2)}{x-1}}\)
- \(\color{blue}{\frac{6(2x-3)}{5}}\)
- \(\color{blue}{\frac{2}{x-5}}\)

### More math articles

- Full-Length 6th Grade FSA Math Practice Test-Answers and Explanations
- The Ultimate PERT Math Course (+FREE Worksheets & Tests)
- Cаlсulаtоrѕ Recommended fоr Math Cоurѕеѕ
- Top 10 PSAT/NMSQT Math Practice Questions
- How Much Does a Tesla Cost?
- 7th Grade WVGSA Math Worksheets: FREE & Printable
- Top 10 Tips to Overcome ACT Math Anxiety
- Top 10 Tips to Create an ASVAB Math Study Plan
- FREE 5th Grade MEAP Math Practice Test
- 4th Grade ILEARN Math Worksheets: FREE & Printable

## What people say about "How to Divide Rational Expressions? (+FREE Worksheet!)"?

No one replied yet.