To simplify polynomials, you need to find “like” terms and combine them. Here you can learn how to simplify polynomials.

## Step by step guide to simplifying polynomials

- Find “like” terms. (they have same variables with same power).
- Add or Subtract “like” terms using order of operation.

### Example 1:

Simplify this expression. \(2x(2x-4)=\)

**Solution:**

Use Distributive Property: \(2x(2x−4)=4x^2−8x\)

### Example 2:

Simplify this expression. \(4x^2+6x+2x^2-4x-3=\)

**Solution:**

First find “like” terms and combine them: \(4x^2+2x^2= 6x^2 \), \(6x-4x= 2x\)

Now simplify: \(4x^2+6x+2x^2-4x-3=6x^2+2x-3\)

### Example 3:

Simplify this expression. \(4x(6x-3)=\)

**Solution:**

Use Distributive Property: \(4x(6x-3)=24x^2-12x\)

### Example 4:

Simplify this expression. \(7x^3+2x^4+2x^3-4x^4-8x=\)

**Answer:**

First find “like” terms and combine them: \(7x^3+2x^3= 10x^3 \), \(2x^4-4x^4= -2x^4 \)

Now simplify and write in standard form: \(7x^3+2x^4+2x^3-4x^4-8x=-2x^4+10x^3-8x\)

## Exercises

### Simplify each expression.

- \(\color{blue}{(12x^3 + 28x^2 + 10x^2 + 4) }\)
- \(\color{blue}{(2x + 12x^2 – 2) – (2x + 1)}\)
- \(\color{blue}{(2x^3 – 1) + (3x^3 – 2x^3)}\)
- \(\color{blue}{(x – 5) (x – 3)}\)
- \(\color{blue}{(3x + 8) (3x – 8)}\)
- \(\color{blue}{(8x^2 – 3x) – (5x – 5 – 8x^2)}\)

### Download Simplifying Polynomials Worksheet

- \(\color{blue}{12x^3 + 38x^2 + 4}\)
- \(\color{blue}{12x^2 – 3 }\)
- \(\color{blue}{3x^3 – 1}\)
- \(\color{blue}{x^2 – 8x + 15}\)
- \(\color{blue}{9x^2 – 64}\)
- \(\color{blue}{16x^2 – 8x + 5}\)