# How to Solve Integers and Absolute Value Problems? (+FREE Worksheet!)

Two vertical lines around a number or expression are used to indicate the absolute value of that number or expression. Here, you can learn how to find the absolute value of a number and how to solve math problems containing absolute values and integers.

The absolute value of the real number \(a\) Is written in the form of \(| a |\) and is a positive number. Two vertical lines around a number or expression are used to indicate the absolute value of that number or expression. The output value of the absolute value is always greater than or equal to zero. Absolute value is used to indicate the distance of a number from zero on the line of real numbers.

## Related Topics

- How to Add and Subtract Integers
- How to Multiply and Divide Integers
- How to Use Order of Operations
- How to Order Integers and Numbers

## Step by step guide to solve integers and absolute value problems

- The absolute value of a positive number is equal to the same positive number.
- The absolute value of zero is equal to zero.
- The absolute value of a negative number is the positive value of that number.

**Note:**To find the absolute value of a number, just find its distance from \(0\) on a number line! For example, the distance of \(12\) and \(- \ 12\) from zero on number line is \(12\)!

### Integers and Absolute Value – Example 1:

Solve. \(|8 \ – \ 2| \ × \ \frac{ |- \ 4 \ × \ 6|}{3}=\)

**Solution:**

First solve \(|8 \ – \ 2|, →|8 \ – \ 2|=|6|\), the absolute value of \(6\) is \(6\), \(|6|=6\)

\(6 \ × \ \frac{ |- \ 4 \ × \ 6|}{3}=\)

Now solve \(|- \ 4 \ × \ 6|, → |- \ 4 \ × \ 6|=|- \ 24|\), the absolute value of \(- \ 24\) is \(24\), \(|- \ 24|=24\)

Then: \(6 \ × \ \frac{ 24}{3}= 6 \ × \ 8=48 \)

### Integers and Absolute Value – Example 2:

Solve. \(\frac{ |- \ 12|}{3} \ × \ |9 \ – \ 4|=\)

**Solution:**

First find \(|- \ 12| , →\) the absolute value of \(- \ 12\) is \(12\), then: \(|- \ 12|=12\)

\(\frac{12}{3} \ × \ |9 \ – \ 4|= \)

Next, solve \(|9 \ – \ 4|, → |9 \ – \ 4|=| \ 5|\), the absolute value of \( \ 5\) is \(5\), \(| \ 5|=5\)

Then: \(\frac{12}{3} \ × \ 5=4 \ × \ 5=20\)

### Integers and Absolute Value – Example 3:

Solve. \(\frac{ |-18|}{9}×|5-8|=\)

**Solution:**

First find \(|-18| , →\) the absolute value of \(-18\) is \(18\), then: \(|-18|=18\)

\( \frac{18}{9}×|5-8|=\)

Next, solve \(|5-8|, → |5-8|=|-3|\), the absolute value of \(-3\) is \(3\), \(|-3|=3\)

Then: \(\frac{18}{9}×3=2×3=6\)

### Integers and Absolute Value – Example 4:

Solve. \(|10-5|×\frac{ |-2×6|}{3}=\)

**Solution:**

First solve \(|10-5|, →|10-5|=|5|\), the absolute value of \(5\) is \(5, |5|=5\)

\( 5×\frac{ |-2×6|}{3}= \)

Now solve \(|-2×6|, → |-2×6|=|-12|\), the absolute value of \(-12\) is \(12, |-12|=12\)

Then: \(5×\frac{ 12}{3}= 5×4=20\)

## Exercises for Solving Integers and Absolute Value Problems

### Evaluate.

- \(\color{blue}{|-43| – |12| + 10}\)
- \(\color{blue}{76 + |-15-45| – |3|}\)
- \(\color{blue}{30 + |-62| – 46}\)
- \(\color{blue}{|32| – |-78| + 90}\)
- \(\color{blue}{|-35+4| + 6 – 4}\)
- \(\color{blue}{|-4| + |-11|}\)

### Download Integers and Absolute Value Worksheet

## Answers

- \(\color{blue}{41}\)
- \(\color{blue}{133}\)
- \(\color{blue}{46}\)
- \(\color{blue}{44}\)
- \(\color{blue}{33}\)
- \(\color{blue}{15}\)

## Related to This Article

### More math articles

- ALEKS Math FREE Sample Practice Questions
- Top 10 3rd Grade SBAC Math Practice Questions
- Best Tablet Floor Stands For Online Teaching
- How to Write the Equation of Parabola?
- Driving Electric Is Cheaper: Let’s Do the Math
- A Comprehensive Collection of Free SHSAT Math Practice Tests
- HiSET Math FREE Sample Practice Questions
- 6th Grade OSTP Math Worksheets: FREE & Printable
- Top 10 3rd Grade NYSE Math Practice Questions
- How to Solve Natural Logarithms Problems? (+FREE Worksheet!)

## What people say about "How to Solve Integers and Absolute Value Problems? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.