How to Solve Infinite Geometric Series? (+FREE Worksheet!)
Learn how to solve the Infinite Geometric Series using the following step-by-step guide and examples.
Related Topics
- How to Solve Finite Geometric Series
- How to Solve Geometric Sequences
- How to Solve Arithmetic Sequences
Step by step guide to solve Infinite Geometric Series
- Infinite Geometric Series: The sum of a geometric series is infinite when the absolute value of the ratio is more than \(1\).
- Infinite Geometric Series formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}}\)
Infinite Geometric Series – Example 1:
Evaluate infinite geometric series described. \(S= \sum_{i=1}^ \infty 9^{i-1}\)
Solution:
Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{i=1}^ \infty 9^{i-1}=\frac{1}{1-9}=\frac{1}{-8}=-\frac{1}{8}\)
The Absolute Best Book to Ace Pre-Algebra
Infinite Geometric Series – Example 2:
Evaluate the infinite geometric series described. \(S= \sum_{k=1}^ \infty (\frac{1}{4})^{k-1}\)
Solution:
Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{k=1}^ \infty (\frac{1}{4})^{k-1}=\frac{1}{1-\frac{1}{4}}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
Infinite Geometric Series – Example 3:
Evaluate the infinite geometric series described. \(S= \sum_{i=1}^ \infty 8^{i-1}\)
Solution:
Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{i=1}^ \infty 8^{i-1}=\frac{1}{1-8}=\frac{1}{-7}=-\frac{1}{7}\)
Infinite Geometric Series – Example 4:
Evaluate the infinite geometric series described. \(S= \sum_{k=1}^ \infty (\frac{1}{2})^{k-1}\)
Solution:
Use this formula: \(\color{blue}{S= \sum_{i=0}^ \infty a_{i}r^i=\frac{a_{1}}{1-r}} → S= \sum_{k=1}^ \infty (\frac{1}{2})^{k-1}=\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2\)
Exercises for Solving Infinite Geometric Series
The Absolute Best Book to Ace the College Algebra Course
content/uploads/2019/12/answers.png” alt=”” class=”lazy-load-image wp-image-6850″ width=”500″ height=”800″/>
- \(\color{blue}{Diverges}\)
- \(\color{blue}{Converges}\)
- \(\color{blue}{Diverges}\)
- \(\color{blue}{Converges}\)
- \(\color{blue}{Converges}\)
- \(\color{blue}{Diverges}\)
The Best Books to Ace Algebra
Related to This Article
More math articles
- FREE 3rd Grade SBAC Math Practice Test
- The Ultimate MAP Algebra 1 Course (+FREE Worksheets)
- Math Mastery: Effortless Math Learning
- How to Graph Absolute Value Inequalities?
- The Ultimate CBEST Math Formula Cheat Sheet
- 3rd Grade SBAC Math FREE Sample Practice Questions
- How to Find Limits at Infinity
- PSAT / NMSQT Math-Test Day Tips
- How to Use Derivation of the Law of Cosines
- The Ultimate 8th Grade STAAR Math Course (+FREE Worksheets)



























What people say about "How to Solve Infinite Geometric Series? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.