# How to Solve Finite Geometric Series

Want to learn more about Finite Geometric Series? Take a look at the following step-by-step guide to solve Finite Geometric Series problems.

## Step by step guide to solve Finite Geometric Series

• The sum of a geometric series is finite when the absolute value of the ratio is less than $$1$$.
• Finite Geometric Series formula: $$\color{blue}{S_{n}=\sum_{i=1}^n ar^{i-1}=a_{1}(\frac{1-r^n}{1-r})}$$

### Finite Geometric Series – Example 1:

Evaluate the geometric series described. $$S_{n}=\sum_{n=1}^5 3^{n-1}$$

Solution:

Use this formula: $$S_{n}=\sum_{i=1}^n ar^{i-1} = a_{1} (\frac{ 1- r^n}{1-r})→S_{n}=\sum_{n=1}^5 3^{n-1} =(1)(\frac{ 1- 3^5}{1-3}) →(1)(\frac{ 1- 3^5}{1-3})=121$$

### Finite Geometric Series – Example 2:

Evaluate the geometric series described. $$S_{n}=\sum_{n=1}^3 -4^{n-1}$$

Solution:

Use this formula: $$S_{n}=\sum_{i=1}^n ar^{i-1} = a_{1} (\frac{ 1- r^n}{1-r})→S_{n}=\sum_{n=1}^3 -4^{n-1} =(-1)(\frac{ 1- 4^3}{1-4}) →(-1)(\frac{ 1- 4^5}{1-4})=-21$$

### Finite Geometric Series – Example 3:

Evaluate the geometric series described. $$S_{n}=\sum_{n=1}^7 2^{n-1}$$

Solution:

Use this formula: $$S_{n}=\sum_{i=1}^n ar^{i-1} = a_{1} (\frac{ 1- r^n}{1-r})→S_{n}=\sum_{n=1}^7 2^{n-1} =1(\frac{ 1- 2^7}{1-2}) →(\frac{ 1- 128}{1-2})=(\frac{-127}{-1})=127$$

### Finite Geometric Series – Example 4:

Evaluate the geometric series described. $$S_{n}=\sum_{n=1}^4 -5^{n-1}$$

Solution:

Use this formula: $$S_{n}=\sum_{i=1}^n ar^{i-1} = a_{1} (\frac{ 1- r^n}{1-r})→S_{n}=\sum_{n=1}^4 -5^{n-1} =(-1)(\frac{ 1- 5^4}{1-5})= (-1)(\frac{ 1- 625}{1-5})= (-1)(\frac{ – 624}{-4})= (-1)(\frac{ 624}{4})=-156$$

## Exercises for Solving Finite Geometric Series

### Evaluate each geometric series described.

• $$\color{blue}{1 – 5 + 25 – 125 …, n = 7}$$
• $$\color{blue}{–3 –6 –12 – 24 …, n = 9}$$
• $$\color{blue}{ \sum_{n=1}^8 2, (-2)^{n-1}} \\\$$
• $$\color{blue}{ \sum_{n=1}^9 4, 3^{n-1} } \\\$$
• $$\color{blue}{ \sum_{n=1}^{10} 4, (-3)^{n-1} } \\\$$
• $$\color{blue}{ \sum_{m=1}^9 -2^{m-1} } \\\$$
• $$\color{blue}{13021}$$
• $$\color{blue}{–1533}$$
• $$\color{blue}{–170}$$
• $$\color{blue}{39364}$$
• $$\color{blue}{–59048}$$
• $$\color{blue}{–511}$$

36% OFF

X

## How Does It Work?

### 1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.

### 2. Add to Cart

Add the eBook to your cart.

### 3. Checkout

Complete the quick and easy checkout process.

### 4. Download

Immediately receive the download link and get the eBook in PDF format.

## Why Buy eBook From Effortlessmath?

Save up to 70% compared to print

Instantly download and access your eBook

Help save the environment

Lifetime access to your eBook

Over 2,000 Test Prep titles available

Over 80,000 happy customers

Over 10,000 reviews with an average rating of 4.5 out of 5

24/7 support

Anytime, Anywhere Access