How to Solve Double Angle Identities?
A double angle formula is a trigonometric identity that expresses the trigonometric function \(2θ\) in terms of trigonometric functions \(θ\). In this step-by-step guide, you will learn more about double-angle formulas.
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
The double angle formulas are used to find the values of double angles of trigonometric functions using their single angle values. Also, the double-angle formulas can be used to derive the triple-angle formulas.
Related Topics
A step-by-step guide to double angle formulas
The double angle formulas are the special cases of the sum formulas of trigonometry and some alternative formulas are derived by using the Pythagorean identities. The sum formulas of trigonometry are:
- \(\color{blue}{sin\:\left(A\:+B\right)=sin\:A\:cos\:B\:+\:cos\:A\:sin\:B}\)
- \(\color{blue}{cos\:\left(A\:+\:B\right)=\:cos\:A\:cos\:B\:-\:sin\:A\:sin\:B}\)
- \(\color{blue}{tan\:\left(A\:+\:B\right)=\:\frac{\left(tan\:A\:+\:tan\:B\right)}{\left(1\:-\:tan\:A\:tan\:B\right)}}\)
What are double-angle formulas?
We derive double-angle formulas of \(sin, cos,\) and \(tan\) by substituting \(A=B\) in each of the above-sum formulas. Also, we will extract some alternative formulas that are derived using Pythagorean identities.
Double Angle Formulas – Example 1:
If \(tan A= \frac{3}{5}\), find the values of \(sin\:2A\).
Solution:
Since the value of \(tan\:A\) is given, we use the double angle formulas for finding \(sin\:2A\).
\(sin\:2A=\frac{2\:tan\:A}{1+tan^2A}\)
\(=\frac{2\left(\frac{3}{5}\right)^2}{1+\left(\frac{3}{5}\right)^2}\)
\(=\frac{\frac{18}{25}}{\frac{34}{25}}\)
\(=\frac{18\times 25}{25\times 34}\)
\(=\frac{9}{17}\)
Exercises for Double Angle Formulas
- Find a formula for \(cos(4x)\) in terms of \(cos x\).
- Solve the equation \(sin\:2x\:=\:cos\:x,\:0\:\le \:x\:<\pi\).
- \(\color{blue}{8\:cos^4x-8\:cos^2x+1}\)
- \(\color{blue}{x=\frac{\pi }{2},\frac{\pi }{6},\frac{5\pi }{6}}\)
Related to This Article
More math articles
- SAT Math-Test Day Tips
- Best Cheap Laptops for Online Teachers: Top Picks
- How to Find the Volume of Cones and Pyramids? (+FREE Worksheet!)
- Middle School Math Worksheets: FREE & Printable
- Relationship Between Sides and Angles in a Triangle
- Using Decimals and Fractions to Solve One-Step Addition and Subtraction
- Division Dynamics: How to Solve Word Problems with Multi-digit Dividends and One-digit Divisors!”
- Mastering the Lagrange Error Bound for Reliable Function Approximations
- Algebra Puzzle – Challenge 42
- What is Rationalizing Infinite Limits: Useful Techniques to Simplify Limits


















What people say about "How to Solve Double Angle Identities? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.