Did you take the FSA 8 Math Practice Test? If so, then it’s time to review your results to see where you went wrong and what areas you need to improve.
FSA 8 Math Practice Test Answers and Explanations
1- Choice C is correct
Jason ate \(\frac{1}{2}\) of 8 parts of his pizza. It means 4 parts out of 8 parts (\(\frac{1}{2}\) of 8 parts is \(x ⇒ x=4\)) and left 4 parts. Eva ate \(\frac{3}{4}\) of 8 parts of her pizza. It means 6 parts out of 8 parts (\(\frac{3}{4}\) of 8 parts is \(x ⇒ x=6\)) and left 2 parts.
Therefore, they ate (4 + 6) parts out of (8 + 8) parts of their pizza and left (4 + 2) parts out of (8 + 8) parts of their pizza that equals to: \(\frac{6}{16}\)
After simplification, the answer is: \(\frac{3}{8}\)
2- The answer is \(5 \frac{7}{10}\) miles.
Robert runs \(3 \frac{1}{10}\) miles on Saturday and \(2×(3 \frac{1}{10} )\) miles on Monday and Wednesday.
Robert wants to run a total of 18 miles this week.
Therefore: \(3 \frac{1}{10}+2×(3 \frac{1}{10})\) should be subtracted from 18:
\(18-(3\frac{1}{10}+2(3 \frac{1}{10}))=15-9 \frac{3}{10}=5 \frac{7}{10}\) miles.
3- Choice A is correct
Let \(x\) be the integer. Then: \(2x+20=68\). Subtract 20 both sides: \(2x=48\). Divide both sides by \(2\) ⇒ \(x=24\)
4- The answer is: –37
Use PEMDAS (order of operation):
\([3×(–21)+(5×2)]–(–25)+[(–3)×6]÷2=[-63+10]+25+[-18]÷2=-53+25-9=-37\)
5- The answer is 768 cm.
Write the proportion and solve for missing side.
\(\frac{Smaller \space triangle \space height}{Smaller \space triangle \space base}
=\frac{Bigger \space triangle \space height}{Bigger \space triangle \space base} ⇒ \frac{100 \space cm}{160 \space cm}=\frac{100+380 \space cm}{x}⇒ x=768 \space cm\)
6- Choice C is correct.
Write the proportion and solve. \(\frac{3 \space ft}{2 \space ft}= \frac{x}{38 \space ft} ⇒ x=57 \space ft\)
7- Choice D is correct.
The distance that Mike runs can be found by the following equation:
\(D_M= 5.5t+7.5\). The distance Julia runs can be found by \(D_J=8t\)
Julia catches Mike if they run the same distance. Therefore:
\(8t=5.5t+7.5⇒2.5t=7.5 ⇒t= \frac{7.5}{2.5}=3\) hours
8- Choice C is correct
x is the number of all sales profit and \(2\%\) of it is:
\(2\%×x=0.02x\). Employer’s revenue: \(0.2x+7,000\)
9- The answer is 60.
Jason needs an \(75\%\) average to pass the exams. Therefore, the sum of 5 exams must be at least \(5×75=375\). The sum of 4 exams is: \(68+72+85+90=315\).
The minimum score Jason can earn on final test to pass is: \(375–315=60\)
10- Choice C is correct.
We can write: \(\frac{25}{100}=\frac{8}{x}⇒\frac{8×100}{25}=x⇒x=32\)
The Absolute Best Book to Ace the FSA 8 Math Test
11- Choice B is correct.
Let \(x\) be the amount of angle and y be the amount of its supplement. The angle and its supplement are \(180^\circ\) in total \((x+y=180^\circ)\). we have: \(x=\frac{1}{5} y\)
\(x+y=\frac{1}{5} y+y =180^\circ ⇒ y=150^\circ\) and \(x=30^\circ\)
12- Choice D is correct
\(y=-2x+1\) ⇒if \(x=0\) therefore \(y=1\) and if \(x=1\) therefore \(y=-1\). Hence choice D is correct.
13- Choice D is correct
\(\begin{cases}\frac{-x}{2}+\frac{y}{4}=1\\\frac{-5y}{6}+2x=4\end{cases}\)
⇒ Multiply the top equation by 4. Then,
\(\begin{cases}-2x+y=4\\\frac{-5y}{6}+2x=4\end{cases}\)
⇒Add two equations.
\(\frac{1}{6} y=8⇒y=48\) , plug in the value of y into the first equation ⇒\(x=22\)
14- Choice C is correct
\(\begin{cases}x+4y=10\\5x+10y=20\end{cases}\)
⇒Multiply the top equation by -5 then,
\(\begin{cases}-5x-20y=-50\\5x+10y=20\end{cases}\)
⇒Add two equations
\(-10y=-30→y=3\) , plug in the value of \(y\) into the first equation
\(x+4y=10⇒x+4(3)=10⇒x+12=10\)
Subtract 12 from both sides of the equation. Then: \(x+12=10→x=-2\)
15- Choice B is correct.
\(\frac{21+18+16+x}{4} =20⇒\frac{55+x}{4}=20⇒55+x=80⇒x=25\)
16- Choice B is correct.
Solve for \(x\).
\(5≤3x-1<11\)⇒ (add 1 all sides) \(5+1≤3x-1+1<11+1 ⇒ 6≤3x<12\) ⇒ (divide all sides by 3) \(2≤x<4 ⇒x\) is between 2 and 4.
17- Choice D is correct.
Distance between two points is equal: \(\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} =\sqrt{(13-(-2)^2+(-2-6)^2}=\sqrt{15^2+(-8)^2}=\sqrt{225+64}=\sqrt{289}=17\)
18- Choice B is correct
Distance between two points is equal:
\(\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(9-4)^2+(7-(-5)^2}=\sqrt{(5)^2+(-12)^2}=\sqrt{169}=13\)
19- Choice D is correct
The slop of line A is: \(m=\frac{y_2-y_1}{x_2-x_1}=\frac{-10-8}{4-(-8)}=-\frac{3}{2}\)
Also \((y-y_1 )=m(x-x_1 )⇒y-8=-\frac{3}{2}(x+8)⇒y=-\frac{3}{2} x-4\)
20- Choice C is correct
The value of \(y\) in the \(x\)-intercept of a line is zero. Then:
\(y=0→10x-4(0)=5→10x=5→x=\frac{1}{2}\). Then, \(x\)-intercept of the line is \(\frac{1}{2}\)
Best FSA 8 Math Prep Resource for 2020
21- Choice C is correct
The total amount of money Giselle made as a carpenter can be modeled by \(20x\), and the total amount of money she made as a blacksmith can be modeled by \(25y\). Since these together add up to $690, we get the following equation:
\(20x+25y=690\).
We are also given that last week, Giselle worked as a carpenter and a blacksmith for a total of 30 hours. This can be expressed as:
\(x+y=30⇒y=30-x\)
Therefor \(20x+25(30-x)=690⇒x=12\) and \(y=18\)
22- Choice D is correct
\(\begin{cases}3x+y=8\\-5x-2y=0\end{cases}\)
Multiply the top equation by 2 then,
\(\begin{cases}6x+2y=16\\-5x-2y=0\end{cases}\)
⇒ Add two equations
\(x=16\) , plug in the value of \(y\) into the first equation
\(3x+y=8→3(16)+y=8→y=-40\)
23- Choice D is correct
Let \(x=\) the total miles of the ride.
Therefore, \(x-1=\) the additional miles of the ride. The correct equation takes $1.25 and adds it to $1.15 times the number of additional miles, \(x-1\). Translating, this becomes: \(y\)(the total cost)\(=1.25+1.15(x-1)\), which is the same equation as \(y=1.15(x-1)+1.25\).
24- Choice D is correct.
Write as two points in terms of: (number of people, cost in$) (15,120) and (25,200). Find the equation of the line using: m\(=\frac{y_2–y_1}{x_2–x_1}\) and \(y=mx+b\)
Equation: \(y=8x\) plug in \(x=40\), \(y=8(40)=320\). A party of 40 people will cost $320.00.
25- Choice A is correct
\(C=250+150h\). Assuming the initial meeting counts for the 1st hour, you would plug in \(h=25\) for a total cost of $4000.00.
26- Choice D is correct
Let the number be \(x\). Then the other number\(=x+8\). Sum of two numbers \(=30\). According to question, \(x+x+8=30 ⇒2x+8=30⇒ 2x=22⇒ x=11\). Therefore, \(x+8=11+8=19\)
27- Choice C is correct.
\(0.0000005823=5.823 × 10^{-7}\)
28- Choice B is correct.
\(28,000,000,000=2.8×10^{10}\)
29- Choice B is correct.
The area of greater circle is: \(A_g=πr^2=π .(45)^2=6361.7 \space mm^2\)
The area of smaller circle is: \(A_s=πr^2=π .(33)^2=3421.2 \space mm^2\)
Then area of colored part is \(A_c=A_g-A_s=6361.7-3421.2=2940.5 \space mm^2\)
30- Choice C is correct.
When a point is reflected over y axes, the \((x)\) coordinate of that point changes to \((-x)\), while its y coordinate remains the same.
Hello. On question #12, choice (D) has a negative slope, but the equation given in the problem, y=x+1, has a positive slope. Choice (D) looks like the graph of y=-2x+1. Please advise. Thanks.
Thank you for letting us know. It’s corrected now.