How to Evaluate Logarithm? (+FREE Worksheet!)
Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

Related Topics
- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations
Necessary Logarithms Rules
- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)
Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)
Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)
Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)
Rule 4: \(\log_{a}{a}=1\)
Rule 5:\(\log_{a}{1}=0\)
Rule 6: \(a^{\log_{a}{k}}=k\)
Examples
Evaluating Logarithm – Example 1:
Evaluate: \(\log_{2}{32}\)
Solution:
Rewrite \(32\) in power base form: \(32=2^5\), then:
\(\log_{2}{32}=\log_{2}{(2)^5}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)
\(5\log_{2}{(2)}=5×1=5\)
Evaluating Logarithm – Example 2:
Evaluate: \(3\log_{5}{125}\)
Solution:
Rewrite \(125\) in power base form: \(125=5^3\), then:
\(\log_{5}{125}=\log_{5}{(5)^3}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)
\(3×3\log_{5}{(5)} =3×3=9\)
Evaluating Logarithm – Example 3:
Evaluate: \(\log_{10}{1000}\)
Solution:
Rewrite \(1000\) in power base form: \(1000=10^3\), then:
\(\log_{10}{1000}=\log_{10}{(10)^3}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)
\(3\log_{10}{(10)}=3×1=3\)
Evaluating Logarithm – Example 4:
Evaluate: \(5\log_{3}{81}\)
Solution:
Rewrite \(81\) in power base form: \(81=3^4\), then:
\(\log_{3}{81}=\log_{3}{(3)^4}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)
\(5×4\log_{3}{(3)} =5×4=20\)
Exercises for Evaluating Logarithm
Evaluate Logarithm.
- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- 8th Grade PARCC Math FREE Sample Practice Questions
- What Kind of Math Learner Is Your Child?
- How to Find the Surface Area of Pyramid?
- How to Use a Graph to Factor Polynomials
- 4th Grade North Carolina End-of-Grade Math Worksheets: FREE & Printable
- Tangible Learning: How to Represent Addition of Fractions with Unlike Denominators Using Everyday Objects
- Top 10 Free Websites for CLEP College Math Preparation
- A Parents’ Guide To Supporting Teens With Their Math Skills
- How to Get ALEKS Done Fast?
- The Ultimate 7th Grade SOL Math Course (+FREE Worksheets)
What people say about "How to Evaluate Logarithm? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.