How to Evaluate Logarithm? (+FREE Worksheet!)
Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

Related Topics
- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations
Necessary Logarithms Rules
- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)
Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)
Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)
Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)
Rule 4: \(\log_{a}{a}=1\)
Rule 5:\(\log_{a}{1}=0\)
Rule 6: \(a^{\log_{a}{k}}=k\)
Examples
Evaluating Logarithm – Example 1:
Evaluate: \(\log_{2}{32}\)
Solution:
Rewrite \(32\) in power base form: \(32=2^5\), then:
\(\log_{2}{32}=\log_{2}{(2)^5}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)
\(5\log_{2}{(2)}=5×1=5\)
Evaluating Logarithm – Example 2:
Evaluate: \(3\log_{5}{125}\)
Solution:
Rewrite \(125\) in power base form: \(125=5^3\), then:
\(\log_{5}{125}=\log_{5}{(5)^3}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)
\(3×3\log_{5}{(5)} =3×3=9\)
Evaluating Logarithm – Example 3:
Evaluate: \(\log_{10}{1000}\)
Solution:
Rewrite \(1000\) in power base form: \(1000=10^3\), then:
\(\log_{10}{1000}=\log_{10}{(10)^3}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)
\(3\log_{10}{(10)}=3×1=3\)
Evaluating Logarithm – Example 4:
Evaluate: \(5\log_{3}{81}\)
Solution:
Rewrite \(81\) in power base form: \(81=3^4\), then:
\(\log_{3}{81}=\log_{3}{(3)^4}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)
\(5×4\log_{3}{(3)} =5×4=20\)
Exercises for Evaluating Logarithm
Evaluate Logarithm.
- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- How to Ace the SHSAT Test?
- Top 10 ALEKS Math Practice Questions
- 5th Grade SBAC Math Practice Test Questions
- How to Add and Subtract Matrices? (+FREE Worksheet!)
- How to Solve Integers Inequalities involving Absolute Values?
- How to Apply Limit Properties
- 5th Grade Common Core Math Worksheets: FREE & Printable
- 5th Grade OST Math Worksheets: FREE & Printable
- Top 10 Tips You MUST Know to Retake the AFOQT Math
- How to Unravel Constant and Identity Functions
What people say about "How to Evaluate Logarithm? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.