How to Evaluate Logarithm? (+FREE Worksheet!)
Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

Related Topics
- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations
Necessary Logarithms Rules
- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)
Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)
Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)
Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)
Rule 4: \(\log_{a}{a}=1\)
Rule 5:\(\log_{a}{1}=0\)
Rule 6: \(a^{\log_{a}{k}}=k\)
Examples
Evaluating Logarithm – Example 1:
Evaluate: \(\log_{2}{32}\)
Solution:
Rewrite \(32\) in power base form: \(32=2^5\), then:
\(\log_{2}{32}=\log_{2}{(2)^5}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)
\(5\log_{2}{(2)}=5×1=5\)
Evaluating Logarithm – Example 2:
Evaluate: \(3\log_{5}{125}\)
Solution:
Rewrite \(125\) in power base form: \(125=5^3\), then:
\(\log_{5}{125}=\log_{5}{(5)^3}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)
\(3×3\log_{5}{(5)} =3×3=9\)
Evaluating Logarithm – Example 3:
Evaluate: \(\log_{10}{1000}\)
Solution:
Rewrite \(1000\) in power base form: \(1000=10^3\), then:
\(\log_{10}{1000}=\log_{10}{(10)^3}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)
\(3\log_{10}{(10)}=3×1=3\)
Evaluating Logarithm – Example 4:
Evaluate: \(5\log_{3}{81}\)
Solution:
Rewrite \(81\) in power base form: \(81=3^4\), then:
\(\log_{3}{81}=\log_{3}{(3)^4}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)
\(5×4\log_{3}{(3)} =5×4=20\)
Exercises for Evaluating Logarithm
Evaluate Logarithm.
- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- Product Predictions: How to Estimate Multiplication in Word Problems
- 6th Grade MAP Math Practice Test Questions
- 4th Grade K-PREP Math Worksheets: FREE & Printable
- Best Office Chairs for Online Math Teachers
- 5th Grade SBAC Math Practice Test Questions
- Top 10 3rd Grade MCAS Math Practice Questions
- How to Prepare for the SIFT Math Test?
- How to Graphing the Floor Function
- Ratio, Proportion and Percentages Puzzle – Challenge 28
- The Ultimate OAR Math Course (+FREE Worksheets)
What people say about "How to Evaluate Logarithm? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.