How to Evaluate Logarithm? (+FREE Worksheet!)
Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

Related Topics
- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations
Necessary Logarithms Rules
- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)
Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)
Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)
Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)
Rule 4: \(\log_{a}{a}=1\)
Rule 5:\(\log_{a}{1}=0\)
Rule 6: \(a^{\log_{a}{k}}=k\)
Examples
Evaluating Logarithm – Example 1:
Evaluate: \(\log_{2}{32}\)
Solution:
Rewrite \(32\) in power base form: \(32=2^5\), then:
\(\log_{2}{32}=\log_{2}{(2)^5}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)
\(5\log_{2}{(2)}=5×1=5\)
Evaluating Logarithm – Example 2:
Evaluate: \(3\log_{5}{125}\)
Solution:
Rewrite \(125\) in power base form: \(125=5^3\), then:
\(\log_{5}{125}=\log_{5}{(5)^3}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)
\(3×3\log_{5}{(5)} =3×3=9\)
Evaluating Logarithm – Example 3:
Evaluate: \(\log_{10}{1000}\)
Solution:
Rewrite \(1000\) in power base form: \(1000=10^3\), then:
\(\log_{10}{1000}=\log_{10}{(10)^3}\)
Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)
Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)
\(3\log_{10}{(10)}=3×1=3\)
Evaluating Logarithm – Example 4:
Evaluate: \(5\log_{3}{81}\)
Solution:
Rewrite \(81\) in power base form: \(81=3^4\), then:
\(\log_{3}{81}=\log_{3}{(3)^4}\)
Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)
Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)
\(5×4\log_{3}{(3)} =5×4=20\)
Exercises for Evaluating Logarithm
Evaluate Logarithm.
- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- Continuity at a point Explained: How to Identify Discontinuities and Their Significance
- 10 Most Common 3rd Grade Georgia Milestones Assessment System Math Questions
- How to Multiply and Divide in Scientific Notation? (+FREE Worksheet!)
- Objects on a Coordinate Plane
- Top 10 5th Grade SBAC Math Practice Questions
- What Kind of Math Is on the CBEST Test?
- How to Analyze Cross Sections of 3D Solids: A Step-by-Step Guide
- The Ultimate NES Elementary Education Math Course
- Algebra Puzzle – Challenge 55
- How to Find Missing Sides and Angles of a Right Triangle? (+FREE Worksheet!)
What people say about "How to Evaluate Logarithm? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.