# How to Evaluate Logarithm? (+FREE Worksheet!)

Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

## Related Topics

- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations

## Necessary Logarithms Rules

- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)

Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)

Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)

Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)

Rule 4: \(\log_{a}{a}=1\)

Rule 5:\(\log_{a}{1}=0\)

Rule 6: \(a^{\log_{a}{k}}=k\)

## Examples

### Evaluating Logarithm – Example 1:

Evaluate: \(\log_{2}{32}\)

**Solution:**

Rewrite \(32\) in power base form: \(32=2^5\), then:

\(\log_{2}{32}=\log_{2}{(2)^5}\)

Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)

Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)

\(5\log_{2}{(2)}=5×1=5\)

### Evaluating Logarithm – Example 2:

Evaluate: \(3\log_{5}{125}\)

**Solution:**

Rewrite \(125\) in power base form: \(125=5^3\), then:

\(\log_{5}{125}=\log_{5}{(5)^3}\)

Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)

Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)

\(3×3\log_{5}{(5)} =3×3=9\)

### Evaluating Logarithm – Example 3:

Evaluate: \(\log_{10}{1000}\)

**Solution:**

Rewrite \(1000\) in power base form: \(1000=10^3\), then:

\(\log_{10}{1000}=\log_{10}{(10)^3}\)

Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)

Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)

\(3\log_{10}{(10)}=3×1=3\)

### Evaluating Logarithm – Example 4:

Evaluate: \(5\log_{3}{81}\)

**Solution:**

Rewrite \(81\) in power base form: \(81=3^4\), then:

\(\log_{3}{81}=\log_{3}{(3)^4}\)

Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)

Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)

\(5×4\log_{3}{(3)} =5×4=20\)

## Exercises for Evaluating Logarithm

### Evaluate Logarithm.

- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)

## Related to This Article

### More math articles

- 8th Grade IAR Math Practice Test Questions
- Dual Degree Programs: A Complete Guide
- 7th Grade Georgia Milestones Assessment System Math FREE Sample Practice Questions
- Prepare for the SAT Math: The Right Combination of Hard Work and Time Management
- How to Prepare for the DAT Quantitative Reasoning Math Test?
- Algebra Puzzle – Challenge 35
- Properties of the Horizontal Line
- Mastering the Basics: The Significance of “Algebra I for Beginners” in Your Back-to-School List
- 5th Grade Common Core Math Practice Test Questions
- ALEKS Math FREE Sample Practice Questions

## What people say about "How to Evaluate Logarithm? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.