# How to Evaluate Logarithm? (+FREE Worksheet!)

Since learning the rules of logarithms is essential for evaluating logarithms, this blog post will teach you some logarithmic rules for the convenience of your work in evaluating logarithms.

## Related Topics

- How to Solve Natural Logarithms
- How to Use Properties of Logarithms
- How to Solve Logarithmic Equations

## Necessary Logarithms Rules

- Logarithm is another way of writing exponent. \(\log_{b}{y}=x\) is equivalent to \(y=b^x\).
- Learn some logarithms rules: \((a>0,a≠0,M>0,N>0\), and k is a real number.)

Rule 1: \(\log_{a}{M.N} =\log_{a}{M} +\log_{a}{N}\)

Rule 2: \(\log_{a}{\frac{M}{N}}=\log_{a}{M} -\log_{a}{N} \)

Rule 3: \(\log_{a}{(M)^k} =k\log_{a}{M}\)

Rule 4: \(\log_{a}{a}=1\)

Rule 5:\(\log_{a}{1}=0\)

Rule 6: \(a^{\log_{a}{k}}=k\)

## Examples

### Evaluating Logarithm – Example 1:

Evaluate: \(\log_{2}{32}\)

**Solution:**

Rewrite \(32\) in power base form: \(32=2^5\), then:

\(\log_{2}{32}=\log_{2}{(2)^5}\)

Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{2}{(2)^5}=5\log_{2}{(2)}\)

Use log rule: \(\log_{a}{(a)}=1→\log_{2}{(2)} =1.\)

\(5\log_{2}{(2)}=5×1=5\)

### Evaluating Logarithm – Example 2:

Evaluate: \(3\log_{5}{125}\)

**Solution:**

Rewrite \(125\) in power base form: \(125=5^3\), then:

\(\log_{5}{125}=\log_{5}{(5)^3}\)

Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{5}{(5)^3}=3\log_{5}{(5)}\)

Use log rule: \(\log_{a}{(a)} =1→ \log_{5}{(5)} =1.\)

\(3×3\log_{5}{(5)} =3×3=9\)

### Evaluating Logarithm – Example 3:

Evaluate: \(\log_{10}{1000}\)

**Solution:**

Rewrite \(1000\) in power base form: \(1000=10^3\), then:

\(\log_{10}{1000}=\log_{10}{(10)^3}\)

Use log rule:\(\log_{a}{(M)^{k}}=k.\log_{a}{M}→\log_{10}{(10)^3}=3\log_{10}{(10)}\)

Use log rule: \(\log_{a}{(a)}=1→\log_{10}{(10)} =1.\)

\(3\log_{10}{(10)}=3×1=3\)

### Evaluating Logarithm – Example 4:

Evaluate: \(5\log_{3}{81}\)

**Solution:**

Rewrite \(81\) in power base form: \(81=3^4\), then:

\(\log_{3}{81}=\log_{3}{(3)^4}\)

Use log rule: \(\log_{a}{(M)^k}=k.\log_{a}{M} →\log_{3}{(3)^4}=4\log_{3}{(3)}\)

Use log rule: \(\log_{a}{(a)} =1→ \log_{3}{(3)} =1.\)

\(5×4\log_{3}{(3)} =5×4=20\)

## Exercises for Evaluating Logarithm

### Evaluate Logarithm.

- \(\color{blue}{3\log_{2}{64}}\)
- \(\color{blue}{\frac{1}{2}\log_{6}{36}}\)
- \(\color{blue}{\frac{1}{3}\log_{3}{27}}\)
- \(\color{blue}{\log_{4}{64}}\)
- \(\color{blue}{\log_{1000}{1}}\)
- \(\color{blue}{\log_{620}{620}}\)

- \(\color{blue}{18}\)
- \(\color{blue}{1}\)
- \(\color{blue}{1}\)
- \(\color{blue}{3}\)
- \(\color{blue}{0}\)
- \(\color{blue}{1}\)

### More math articles

- How to Simplify Fractions? (+FREE Worksheet!)
- Top 10 Tips to Create a SHSAT Math Study Plan
- Full-Length 6th Grade MCAS Math Practice Test
- Top 10 Tips to Overcome CLEP College Math Anxiety
- Top Calculators for the ACT Math Test 2022: Quick Review
- FREE 6th Grade Georgia Milestones Assessment System Math Practice Test
- Top 10 6th Grade MAP Math Practice Questions
- The Ultimate OAR Math Course (+FREE Worksheets)
- Top 10 Tips to Create an ACT Math Study Plan
- The Ultimate Algebra 1 Course (+FREE Worksheets)

## What people say about "How to Evaluate Logarithm? (+FREE Worksheet!)"?

No one replied yet.