Differentiability: Everything You Need To Know
- Differentiability and Smoothness: A function is differentiable at a point if it is “smooth” (without sharp corners or cusps) and continuous at that point. The smoothness implies that the function’s graph can be approximated by a tangent line at every point where the function is differentiable.
- Differentiability and Continuity: While differentiability implies continuity, the converse isn’t always true. A function can be continuous but not differentiable at certain points. A typical example is the absolute value function \( f(x) = |x| \), which is continuous everywhere but not differentiable at \( x = 0 \) due to a sharp corner.
Examples:
1. Quadratic Function:
\( f(x) = x^2 \Rightarrow f'(x) = 2x \)
Since \( f'(x) \) is defined and continuous for all \( x \), \( f(x) \) is differentiable everywhere.
2. Absolute Value Function (Continuous but not Differentiable at a Point):
\( f(x) = |x| \)
\( f'(x) \) does not exist at \( x = 0 \) because of the sharp corner in its graph.
\( f(x) \) is continuous everywhere but not differentiable at \( x = 0 \).
3. Trigonometric Function:
\( f(x) = \sin x \Rightarrow f'(x) = \cos x \)
Since \( f'(x) \) is continuous and defined for all \( x \), \( f(x) \) is differentiable everywhere.
4. Piecewise Function (Continuity Without Differentiability):
\( f(x) = \begin{cases} x^2 & \text{if } x \leq 0 \ \sqrt{x} & \text{if } x > 0 \end{cases} \)
The derivative changes abruptly at \( x = 0 \). Although \( f(x) \) is continuous at \( x = 0 \), it is not differentiable there due to the abrupt change in the rate of change.
Another Example:
\( f(x) = x^3 \text{ and } g(x) = x^{1/3}. \)
\( f(x) = x^3, \ f'(x) = 3x^2 \) \\
\( \text{Since } f'(x) \text{ is continuous and defined for all } x, \ f(x) \text{ is differentiable everywhere.} \)
\( g(x) = x^{1/3}, \ g'(x) = \frac{1}{3}x^{-2/3} \) \\
\( \text{Since } g'(x) \text{ is not defined at } x = 0, \ g(x) \text{ is not differentiable at } x = 0. \)
\( g(x) = x^{2/3}, \ g'(x) = \frac{2}{3}x^{-1/3} \) \\
\( \text{Since } g'(x) \text{ is not defined at } x = 0, \ g(x) \text{ is not differentiable at } x = 0. \)
If a function is not differentiable at a certain point, it means you cannot calculate its derivative at that point. The function lacks a defined rate of change or slope at that specific location on its graph.
Related to This Article
More math articles
- How to Represente Proportional Relationships with Equations
- Intelligent Math Puzzle – Challenge 92
- How to Model and Solve Equations Using Algebra Tiles
- 5 Best Math Books for College Students: A Comprehensive Review
- Why Most Players Misuse Poker Calculators (and How to Get It Right)
- What is the Highest ASVAB Score?
- How to Use Four Operations to Find the Rule of Input/Output Tables
- The Ultimate Regents Algebra 1 Course (+FREE Worksheets)
- How to Use Grids to Multiply One-digit Numbers By Teen Numbers
- Decoding Data: How to Identify Representative, Random, and Biased Samples


























What people say about "Differentiability: Everything You Need To Know - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.