Cofunction Identities
Cofunction identities show the relationship between the different trigonometric functions and their complementary angles. In this guide, you will learn more about cofunction identities.
[include_netrun_products_block from-products="product/10-full-length-pert-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
A step-by-step guide to cofunction identities
Cofunction identities are trigonometric identities that show a relationship between trigonometric functions and complementary angles.
We have six identities that can be obtained using right triangles, the angle sum property of a triangle, and trigonometric ratio formulas.
The cofunction identities establish a relationship between trigonometric functions \(sin\) and \(cos\), \(tan\) and \(cot\), and \(sec\) and \(csc\). These functions are known as cofunctions of each other.
We can write cofunction identities in terms of radians and degrees because these are the units of angle measurement.
Cofunction identities in radians
- \(\color{blue}{sin\:\left(\frac{\pi }{2}\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(\frac{\pi }{2}\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(\frac{\pi }{2}-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(\:\frac{\pi }{2}-θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(\frac{\pi }{2}-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(\frac{\pi }{2}-θ\right)=sec\:θ}\)
Cofunction identities in degrees
- \(\color{blue}{sin\:\left(90°\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(90°\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(90°\:-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(90°\:-\:θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(90°\:-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(90°-\:θ\right)=sec\:θ}\)
Cofunction Identities – Example 1:
Find the value of acute angle \(x\), if \(sin\:x=cos\:40°\).
Solution:
Using cofunction identity, \(cos\:\left(90°\:-\:θ\right)=sin\:θ\), we can write \(sin\:x=cos\:40°\) as:
\(sin\:x=cos\:40°\)
\(cos\:\left(90°-\:x\right)=cos\:40°\)
\(90°-\:x=40°\)
\(x=90°-40°\)
\(x=50°\)
Related to This Article
More math articles
- Subtracting 2-Digit Numbers
- A Deep Dive Into The World of Vector-Valued Function
- Introduction to Sets
- How to Prepare for the ATI TEAS 7 Math Test?
- Sandy Savings: A Guide to How to Calculate Sales Tax on Your Beach Vacation
- Bеѕt Cоllеgе Lарtорs in 2026
- Full-Length ALEKS Math Practice Test
- 4th Grade Ohio’s State Tests Math Worksheets: FREE & Printable
- 5 Best Accuplacer Math Study Guides
- How to Find Domain and Range of Relation




































What people say about "Cofunction Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.