Cofunction Identities
Cofunction identities show the relationship between the different trigonometric functions and their complementary angles. In this guide, you will learn more about cofunction identities.
[include_netrun_products_block from-products="product/10-full-length-pert-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
A step-by-step guide to cofunction identities
Cofunction identities are trigonometric identities that show a relationship between trigonometric functions and complementary angles.
We have six identities that can be obtained using right triangles, the angle sum property of a triangle, and trigonometric ratio formulas.
The cofunction identities establish a relationship between trigonometric functions \(sin\) and \(cos\), \(tan\) and \(cot\), and \(sec\) and \(csc\). These functions are known as cofunctions of each other.
We can write cofunction identities in terms of radians and degrees because these are the units of angle measurement.
Cofunction identities in radians
- \(\color{blue}{sin\:\left(\frac{\pi }{2}\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(\frac{\pi }{2}\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(\frac{\pi }{2}-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(\:\frac{\pi }{2}-θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(\frac{\pi }{2}-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(\frac{\pi }{2}-θ\right)=sec\:θ}\)
Cofunction identities in degrees
- \(\color{blue}{sin\:\left(90°\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(90°\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(90°\:-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(90°\:-\:θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(90°\:-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(90°-\:θ\right)=sec\:θ}\)
Cofunction Identities – Example 1:
Find the value of acute angle \(x\), if \(sin\:x=cos\:40°\).
Solution:
Using cofunction identity, \(cos\:\left(90°\:-\:θ\right)=sin\:θ\), we can write \(sin\:x=cos\:40°\) as:
\(sin\:x=cos\:40°\)
\(cos\:\left(90°-\:x\right)=cos\:40°\)
\(90°-\:x=40°\)
\(x=90°-40°\)
\(x=50°\)
Related to This Article
More math articles
- Easy Ways To Overcome Your Fear Of Math!
- Comparison and Number Ordering
- Can You Train Your Brain to Think Like a Mathematician?
- Algebra Puzzle – Challenge 31
- What Kind of Math Is on the PSAT/NMSQT Test?
- How to Find Convert Fractions and Mixed Numbers into Decimals
- The Importance Of Mathematics For Students Pursuing STEM
- PSAT 8/9, PSAT 10, and PSAT/NMSQT Preview
- How to Use Measures of Center and Spread to Compare Populations
- 8th Grade WVGSA Math Worksheets: FREE & Printable



































What people say about "Cofunction Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.