Cofunction Identities
Cofunction identities show the relationship between the different trigonometric functions and their complementary angles. In this guide, you will learn more about cofunction identities.
A step-by-step guide to cofunction identities
Cofunction identities are trigonometric identities that show a relationship between trigonometric functions and complementary angles.
We have six identities that can be obtained using right triangles, the angle sum property of a triangle, and trigonometric ratio formulas.
The cofunction identities establish a relationship between trigonometric functions \(sin\) and \(cos\), \(tan\) and \(cot\), and \(sec\) and \(csc\). These functions are known as cofunctions of each other.
We can write cofunction identities in terms of radians and degrees because these are the units of angle measurement.
Cofunction identities in radians
- \(\color{blue}{sin\:\left(\frac{\pi }{2}\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(\frac{\pi }{2}\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(\frac{\pi }{2}-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(\:\frac{\pi }{2}-θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(\frac{\pi }{2}-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(\frac{\pi }{2}-θ\right)=sec\:θ}\)
Cofunction identities in degrees
- \(\color{blue}{sin\:\left(90°\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(90°\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(90°\:-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(90°\:-\:θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(90°\:-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(90°-\:θ\right)=sec\:θ}\)
Cofunction Identities – Example 1:
Find the value of acute angle \(x\), if \(sin\:x=cos\:40°\).
Solution:
Using cofunction identity, \(cos\:\left(90°\:-\:θ\right)=sin\:θ\), we can write \(sin\:x=cos\:40°\) as:
\(sin\:x=cos\:40°\)
\(cos\:\left(90°-\:x\right)=cos\:40°\)
\(90°-\:x=40°\)
\(x=90°-40°\)
\(x=50°\)
Related to This Article
More math articles
- The Ultimate HiSET Math Course (+FREE Worksheets & Tests)
- Mastering the Lagrange Error Bound for Reliable Function Approximations
- How to Solve Composition of Functions? (+FREE Worksheet!)
- Top 10 Trigonometry Books: A Comprehensive Guide for Students and Teachers (Our 2026 Favorite Picks)
- The Ultimate ASVAB Math Course (+FREE Worksheets & Tests)
- How to Understand Convergent and Divergent Series
- SAT Math Level 2 Calculator Tips to Boost Your Score
- The Math Expedition: How to Use Theoretical Probability to Predict the Unpredictable
- Unlocking Solutions: A Step-by-Step Guide to How to Solve Non-linear Equations by Substitution
- Best Office Chairs For Online Teachers


























What people say about "Cofunction Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.