Cofunction Identities
Cofunction identities show the relationship between the different trigonometric functions and their complementary angles. In this guide, you will learn more about cofunction identities.

A step-by-step guide to cofunction identities
Cofunction identities are trigonometric identities that show a relationship between trigonometric functions and complementary angles.
We have six identities that can be obtained using right triangles, the angle sum property of a triangle, and trigonometric ratio formulas.
The cofunction identities establish a relationship between trigonometric functions \(sin\) and \(cos\), \(tan\) and \(cot\), and \(sec\) and \(csc\). These functions are known as cofunctions of each other.
We can write cofunction identities in terms of radians and degrees because these are the units of angle measurement.
Cofunction identities in radians
- \(\color{blue}{sin\:\left(\frac{\pi }{2}\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(\frac{\pi }{2}\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(\frac{\pi }{2}-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(\:\frac{\pi }{2}-θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(\frac{\pi }{2}-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(\frac{\pi }{2}-θ\right)=sec\:θ}\)
Cofunction identities in degrees
- \(\color{blue}{sin\:\left(90°\:-\:θ\right)=cos\:θ}\)
- \(\color{blue}{cos\:\left(90°\:-\:θ\right)=sin\:θ}\)
- \(\color{blue}{tan\:\left(90°\:-\:θ\right)=cot\:θ}\)
- \(\color{blue}{cot\:\left(90°\:-\:θ\right)=tan\:θ}\)
- \(\color{blue}{sec\:\left(90°\:-\:θ\right)=cosec\:θ}\)
- \(\color{blue}{csc\:\left(90°-\:θ\right)=sec\:θ}\)
Cofunction Identities – Example 1:
Find the value of acute angle \(x\), if \(sin\:x=cos\:40°\).
Solution:
Using cofunction identity, \(cos\:\left(90°\:-\:θ\right)=sin\:θ\), we can write \(sin\:x=cos\:40°\) as:
\(sin\:x=cos\:40°\)
\(cos\:\left(90°-\:x\right)=cos\:40°\)
\(90°-\:x=40°\)
\(x=90°-40°\)
\(x=50°\)
Related to This Article
More math articles
- 10 Most Common 3rd Grade FSA Math Questions
- How to Determine the Classification of a System of Equations?
- How to Master the Concept of Continuity over an Interval
- Geometry Puzzle – Challenge 75
- FREE SIFT Math Practice Test
- How to Apply Integers Multiplication and Division Rules?
- TASC Math Test-Taking Strategies
- Other Topics Puzzle – Challenge 96
- Top 10 Free Websites for GED Math Preparation
- 10 Most Common ISEE Upper-Level Math Questions
What people say about "Cofunction Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.