How to Add and Subtract Rational Expressions? (+FREE Worksheet!)
By knowing a few simple rules you can easily add and subtract Rational Expressions. In this blog post, we will introduce you step by step guide on how to add and subtract rational expressions.
Related Topics
- How to Multiply Rational Expressions
- How to Divide Rational Expressions
- How to Solve Rational Equations
- How to Simplify Complex Fractions
- How to Graph Rational Expressions
A step-by-step guide to Adding and Subtracting Rational Expressions
For adding and subtracting rational expressions:
- Find the least common denominator (LCD).
- Write each expression using the LCD.
- Add or subtract the numerators.
- Simplify as needed
Examples
Adding and Subtracting Rational Expressions – Example 1:
Solve: \(\frac{4}{2x+3}+\frac{x-2 }{2x+3}=\)
Solution:
The denominators are equal. Then, use fractions addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{4}{2x+3}+\frac{x-2}{2x+3}=\frac{4+(x-2) }{2x+3}=\frac{x+2}{2x+3}\)
Adding and Subtracting Rational Expressions – Example 2:
Solve \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}\)=
Solution:
Find the least common denominator of\( (x-5)\) and \((x+6): (x-5)(x+6) \)
Then: \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}=\frac{(x+4)(x+6)}{(x-5)(x+6)}+\frac{(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}\)
Expand: \((x+4)(x+6)+(x-4)(x-5)=2x^2+x+44\)
Then: \(\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{2x^2+x+44}{(x +6)(x-5)}=\frac{2x^2+x+44}{x^2+x-30}\)
Adding and Subtracting Rational Expressions – Example 3:
Solve: \(\frac{3}{x+4}+\frac{x-2 }{x+4}\)=
Solution:
Use fraction addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{3}{x+4}+\frac{x-2}{x+4}=\frac{3+(x-2) }{x+4}=\frac{x+1}{x+4}\)
Adding and Subtracting Rational Expressions – Example 4:
Solve: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}\)=
Solution:
Least common denominator of \((x-8)\) and \((x+6): (x-8)(x+6)\)
Then: \(\frac{(x+4)(x+6)}{(x-8)(x+6)}+\frac{x(x-8)}{(x + 6)(x-8)}=\frac{(x+4)(x+6)+x(x-8)}{(x + 6)(x-8)}\)
Expand: \((x+4)(x+6)+x(x-8)=2x^2+2x+24\)
Then: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}=\frac{2x^2+2x+24}{(x +6)(x-8)}\)
Exercises for Simplifying Fractions
Add and Subtract Rational Expressions.
- \(\color{blue}{\frac{3}{x+1}-\frac{4x}{x+1}=}\)
- \(\color{blue}{\frac{x+8}{x+1}+\frac{x-9}{x+2}=}\)
- \(\color{blue}{\frac{6x}{x+5}+\frac{x+2}{x+7}=}\)
- \(\color{blue}{\frac{15}{x+6}-\frac{x+1}{x^{2}-36}=}\)
- \(\color{blue}{\frac{x+4}{x+3}-\frac{5x}{x-3}=}\)
- \(\color{blue}{\frac{x+8}{x-4}+\frac{x-5}{x^{2}-16}=}\)
- \(\color{blue}{\frac{3-4x}{x+1}}\)
- \(\color{blue}{\frac{2x^2+2x+7}{(x+1)(x+2)}}\)
- \(\color{blue}{\frac{7x^2+49x+10}{(x+5)(x+7)}}\)
- \(\color{blue}{\frac{14x-91}{(x+6)(x-6)}}\)
- \(\color{blue}{\frac{-4x^2-14x-12}{(x+3)(x-3)}}\)
- \(\color{blue}{\frac{x^2+13x+27}{(x+4)(x-4)}}\)
Related to This Article
More math articles
- Quotient Quickies: How to Navigate Decimal Division with Estimations
- The Ultimate 6th Grade North Carolina EOG Math Course (+FREE Worksheets)
- Using Strip Models to Solve Percentage Problems
- How to Find the Period of a Function?
- Algebra Puzzle – Challenge 39
- Top 10 6th Grade SBAC Math Practice Questions
- Top 10 7th Grade PARCC Math Practice Questions
- Infinitely Close But Never There
- How to Solve Absolute Values and Opposites of Rational Numbers?
- How to Order Integers and Numbers? (+FREE Worksheet!)






































What people say about "How to Add and Subtract Rational Expressions? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.