How to Add and Subtract Rational Expressions? (+FREE Worksheet!)
By knowing a few simple rules you can easily add and subtract Rational Expressions. In this blog post, we will introduce you step by step guide on how to add and subtract rational expressions.
Related Topics
- How to Multiply Rational Expressions
- How to Divide Rational Expressions
- How to Solve Rational Equations
- How to Simplify Complex Fractions
- How to Graph Rational Expressions
A step-by-step guide to Adding and Subtracting Rational Expressions
For adding and subtracting rational expressions:
- Find the least common denominator (LCD).
- Write each expression using the LCD.
- Add or subtract the numerators.
- Simplify as needed
Examples
Adding and Subtracting Rational Expressions – Example 1:
Solve: \(\frac{4}{2x+3}+\frac{x-2 }{2x+3}=\)
Solution:
The denominators are equal. Then, use fractions addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{4}{2x+3}+\frac{x-2}{2x+3}=\frac{4+(x-2) }{2x+3}=\frac{x+2}{2x+3}\)
Adding and Subtracting Rational Expressions – Example 2:
Solve \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}\)=
Solution:
Find the least common denominator of\( (x-5)\) and \((x+6): (x-5)(x+6) \)
Then: \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}=\frac{(x+4)(x+6)}{(x-5)(x+6)}+\frac{(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}\)
Expand: \((x+4)(x+6)+(x-4)(x-5)=2x^2+x+44\)
Then: \(\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{2x^2+x+44}{(x +6)(x-5)}=\frac{2x^2+x+44}{x^2+x-30}\)
Adding and Subtracting Rational Expressions – Example 3:
Solve: \(\frac{3}{x+4}+\frac{x-2 }{x+4}\)=
Solution:
Use fraction addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{3}{x+4}+\frac{x-2}{x+4}=\frac{3+(x-2) }{x+4}=\frac{x+1}{x+4}\)
Adding and Subtracting Rational Expressions – Example 4:
Solve: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}\)=
Solution:
Least common denominator of \((x-8)\) and \((x+6): (x-8)(x+6)\)
Then: \(\frac{(x+4)(x+6)}{(x-8)(x+6)}+\frac{x(x-8)}{(x + 6)(x-8)}=\frac{(x+4)(x+6)+x(x-8)}{(x + 6)(x-8)}\)
Expand: \((x+4)(x+6)+x(x-8)=2x^2+2x+24\)
Then: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}=\frac{2x^2+2x+24}{(x +6)(x-8)}\)
Exercises for Simplifying Fractions
Add and Subtract Rational Expressions.
- \(\color{blue}{\frac{3}{x+1}-\frac{4x}{x+1}=}\)
- \(\color{blue}{\frac{x+8}{x+1}+\frac{x-9}{x+2}=}\)
- \(\color{blue}{\frac{6x}{x+5}+\frac{x+2}{x+7}=}\)
- \(\color{blue}{\frac{15}{x+6}-\frac{x+1}{x^{2}-36}=}\)
- \(\color{blue}{\frac{x+4}{x+3}-\frac{5x}{x-3}=}\)
- \(\color{blue}{\frac{x+8}{x-4}+\frac{x-5}{x^{2}-16}=}\)

- \(\color{blue}{\frac{3-4x}{x+1}}\)
- \(\color{blue}{\frac{2x^2+2x+7}{(x+1)(x+2)}}\)
- \(\color{blue}{\frac{7x^2+49x+10}{(x+5)(x+7)}}\)
- \(\color{blue}{\frac{14x-91}{(x+6)(x-6)}}\)
- \(\color{blue}{\frac{-4x^2-14x-12}{(x+3)(x-3)}}\)
- \(\color{blue}{\frac{x^2+13x+27}{(x+4)(x-4)}}\)
Related to This Article
More math articles
- How to Solve a Quadratic Equation by Completing the Square?
- Understanding Fractions Definition
- FREE CLEP College Algebra Practice Test
- FREE ASVAB Math Practice Test
- 10 Must-Have Elementary Classroom Math Supplies
- Zero Mastery: How to Tackle Word Problems with Numbers Ending in Zero
- Top 10 Tips for Managing Time Effectively on the SAT Math
- A Comprehensive Collection of Free CHSPE Math Practice Tests
- Using Number Lines to Subtract Integers
- How to Understand Functions




































What people say about "How to Add and Subtract Rational Expressions? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.