How to Add and Subtract Rational Expressions? (+FREE Worksheet!)
By knowing a few simple rules you can easily add and subtract Rational Expressions. In this blog post, we will introduce you step by step guide on how to add and subtract rational expressions.
Related Topics
- How to Multiply Rational Expressions
- How to Divide Rational Expressions
- How to Solve Rational Equations
- How to Simplify Complex Fractions
- How to Graph Rational Expressions
A step-by-step guide to Adding and Subtracting Rational Expressions
For adding and subtracting rational expressions:
- Find the least common denominator (LCD).
- Write each expression using the LCD.
- Add or subtract the numerators.
- Simplify as needed
Examples
Adding and Subtracting Rational Expressions – Example 1:
Solve: \(\frac{4}{2x+3}+\frac{x-2 }{2x+3}=\)
Solution:
The denominators are equal. Then, use fractions addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{4}{2x+3}+\frac{x-2}{2x+3}=\frac{4+(x-2) }{2x+3}=\frac{x+2}{2x+3}\)
Adding and Subtracting Rational Expressions – Example 2:
Solve \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}\)=
Solution:
Find the least common denominator of\( (x-5)\) and \((x+6): (x-5)(x+6) \)
Then: \(\frac{x + 4}{x – 5}+\frac{x – 4}{x + 6}=\frac{(x+4)(x+6)}{(x-5)(x+6)}+\frac{(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}\)
Expand: \((x+4)(x+6)+(x-4)(x-5)=2x^2+x+44\)
Then: \(\frac{(x+4)(x+6)+(x – 4)(x-5)}{(x + 6)(x-5)}=\frac{2x^2+x+44}{(x +6)(x-5)}=\frac{2x^2+x+44}{x^2+x-30}\)
Adding and Subtracting Rational Expressions – Example 3:
Solve: \(\frac{3}{x+4}+\frac{x-2 }{x+4}\)=
Solution:
Use fraction addition rule: \(\frac{a}{c}±\frac{b}{c}=\frac{a ± b}{c}→\frac{3}{x+4}+\frac{x-2}{x+4}=\frac{3+(x-2) }{x+4}=\frac{x+1}{x+4}\)
Adding and Subtracting Rational Expressions – Example 4:
Solve: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}\)=
Solution:
Least common denominator of \((x-8)\) and \((x+6): (x-8)(x+6)\)
Then: \(\frac{(x+4)(x+6)}{(x-8)(x+6)}+\frac{x(x-8)}{(x + 6)(x-8)}=\frac{(x+4)(x+6)+x(x-8)}{(x + 6)(x-8)}\)
Expand: \((x+4)(x+6)+x(x-8)=2x^2+2x+24\)
Then: \(\frac{x + 4}{x – 8}+ \frac{x }{x + 6}=\frac{2x^2+2x+24}{(x +6)(x-8)}\)
Exercises for Simplifying Fractions
Add and Subtract Rational Expressions.
- \(\color{blue}{\frac{3}{x+1}-\frac{4x}{x+1}=}\)
- \(\color{blue}{\frac{x+8}{x+1}+\frac{x-9}{x+2}=}\)
- \(\color{blue}{\frac{6x}{x+5}+\frac{x+2}{x+7}=}\)
- \(\color{blue}{\frac{15}{x+6}-\frac{x+1}{x^{2}-36}=}\)
- \(\color{blue}{\frac{x+4}{x+3}-\frac{5x}{x-3}=}\)
- \(\color{blue}{\frac{x+8}{x-4}+\frac{x-5}{x^{2}-16}=}\)
- \(\color{blue}{\frac{3-4x}{x+1}}\)
- \(\color{blue}{\frac{2x^2+2x+7}{(x+1)(x+2)}}\)
- \(\color{blue}{\frac{7x^2+49x+10}{(x+5)(x+7)}}\)
- \(\color{blue}{\frac{14x-91}{(x+6)(x-6)}}\)
- \(\color{blue}{\frac{-4x^2-14x-12}{(x+3)(x-3)}}\)
- \(\color{blue}{\frac{x^2+13x+27}{(x+4)(x-4)}}\)
Related to This Article
More math articles
- Unraveling the Art of Graphing: A Deep Dive into Absolute Value Functions
- FTCE Math Practice Test Questions
- How to Use Order of Operations? (+FREE Worksheet!)
- How to Use Measures of Center and Spread to Compare Populations
- 7th Grade ISASP Math Worksheets: FREE & Printable
- TABE Math-Test Day Tips
- How to Unlock the Secrets of Success: “ISEE Upper Level Math for Beginners” Solution Guide
- 6th Grade PSSA Math FREE Sample Practice Questions
- 6 Best Pre-Algebra Study Guides
- Subtracting Multi-Digit Numbers for 4th Grade





































What people say about "How to Add and Subtract Rational Expressions? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.