Understanding Trigonometry: How to Calculate the Area of Triangles
The vast realm of trigonometry extends far beyond just sine, cosine, and tangent. Its principles have the power to simplify seemingly complex problems, such as finding the area of a triangle without knowing its height. By merging basic triangle area formulas with the magic of trigonometric ratios, we can unveil triangle areas in a whole new light. Intrigued? Let’s venture into the trigonometric technique to compute triangle areas.

Step-by-step Guide: Trigonometry and Area of Triangles
Basic Area of a Triangle:
The most common formula for finding the area of a triangle is:
\( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)
Introducing Trigonometry:
If two sides of a triangle and the included angle are known, the area can be determined using:
\( \text{Area} = \frac{1}{2} \times a \times b \times \sin(C) \)
Here, \(a\) and \(b\) are the two known sides, and \(C\) is the included angle between them.
Why Does This Work?:
The height in the standard formula can be expressed in terms of \(a\), \(b\), and \(C\). The height would be \(a \times \sin(C)\) (or equivalently, \(b \times \sin(A))\). By substituting this into the base-height formula, we get the trigonometric area formula.
Examples
Example 1:
Given a triangle \(ABC\) with side \(AB = 5 \text{ cm}\), side \(BC = 7 \text{ cm}\), and angle \(B = 60^\circ\), find the area of triangle \(ABC\).
Solution:
Using the trigonometric formula for area:
\( \text{Area} = \frac{1}{2} \times AB \times BC \times \sin(B) \)
\( \text{Area} = \frac{1}{2} \times 5 \text{ cm} \times 7 \text{ cm} \times \sin(60^\circ) \)
\( \text{Area} = 15.5 \text{ cm}^2 \) (approximately)
Example 2:
For triangle \(PQR\), side \(PQ = 8 \text{ cm}\), side \(QR = 10 \text{ cm}\), and angle \(Q = 45^\circ\), determine the area of triangle PQR.
Solution:
\( \text{Area} = \frac{1}{2} \times PQ \times QR \times \sin(Q) \)
\( \text{Area} = \frac{1}{2} \times 8 \text{ cm} \times 10 \text{ cm} \times \sin(45^\circ) \)
\( \text{Area} = 28.28 \text{ cm}^2 \) (approximately)
Practice Questions:
- Given triangle \(XYZ\) with \(XY = 6 \text{ cm}\), \(YZ = 9 \text{ cm}\), and angle \(Y = 30^\circ\), find its area.
- For triangle \(LMN\), if \(LM = 4 \text{ cm}\), \(MN = 5 \text{ cm}\), and angle \(M = 90^\circ\), calculate the area.

Answers:
- \( 13.5 \text{ cm}^2 \)
- \( 10 \text{ cm}^2 \)
Related to This Article
More math articles
- The Ultimate MTEL Mathematics (Elementary) (68) Course (+FREE Worksheets & Tests)
- The Ultimate 6th Grade MCAP Math Course (+FREE Worksheets)
- Full-Length SSAT Middle Level Practice Test-Answers and Explanations
- Full-Length SSAT Middle Level Math Practice Test
- 10 Most Common TSI Math Questions
- Intelligent Math Puzzle – Challenge 81
- 8th Grade PSSA Math FREE Sample Practice Questions
- Top 10 4th Grade PSSA Math Practice Questions
- 10 Most Common 7th Grade SBAC Math Questions
- SSAT Upper Level Math Practice Test Questions
What people say about "Understanding Trigonometry: How to Calculate the Area of Triangles - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.