Transformation Using Matrices
A vector can be represented as a column matrix. Here you will learn more about using matrices to transform the plane.

The transformation matrix is a matrix that transforms one vector into another vector. The transformation matrix changes the Cartesian system and plots the vector coordinates to new coordinates.
Related Topics
Step by step guide to transformation using matrices
An ordered pair \((x,y)\) can be used to represent a vector, however, a column matrix can also be used:
\(\begin{bmatrix}x \\y \end{bmatrix}\)
Polygons could also be represented in matrix form, we simply place all of the coordinates of the vertices into one matrix. This is called a vertex matrix.
Transformation Using Matrices ā Example 1:
A square has its vertexes in the following coordinates \((1,1)\), \((-1,1)\), \((-1,-1)\) and \((1,-1)\). Create a vertex matrix.
To create a vertex matrix, plug each ordered pair into each column of a \(4\) column matrix:
\(\begin{bmatrix}x_1 & x_2 & x_3 & x_4 \\y_1 & y_2 & y_3 & y_4 \end{bmatrix}\)\(=\) \(\begin{bmatrix}1 & -1 & -1 & 1 \\1 & 1 & -1 & -1 \end{bmatrix}\)
Transformation Using Matrices ā Example 2:
Create a reflection of the vector in the \(x\)-axis. \(vā = \begin{bmatrix}-1 & 3 \\2 & -2 \end{bmatrix}\)
To create a reflection, we have to multiply it by the correct reflection matrix:
\(\begin{bmatrix}-1 & 0 \\0 & 1 \end{bmatrix}\)
So the vertex matrix of our reflection is:
\(\begin{bmatrix}-1 & 3 \\2 & -2 \end{bmatrix}\) . \(\begin{bmatrix}-1 & 0 \\0 & 1 \end{bmatrix}\)
\(=\begin{bmatrix}(-1.-1) + (3. \space0) & (-1. \space 0) + (3. \space 1) \\ (2.\space -1) +(-2 .\space 0) & (2. \space 0) (-2.\space 1) \end{bmatrix}\) \( = \begin{bmatrix}1 & 3 \\-2 & -2\end{bmatrix}\)
Exercises for Transformation Using Matrices
- If \(vā =(2,4)\) and \(š¢ā =(6,2)\). Use matrices to find each of the following vectors:
- \(\color{blue}{3v}\)
- \(\color{blue}{v+u}\)
- \(\color{blue}{u-2v}\)
- Find the new vector formed for the vector \(5i+4j\), with the help of the transformation matrix \(\begin{bmatrix}2 & -3 \\1 & 2\end{bmatrix}\).

- \(\color{blue}{\begin{bmatrix} 6 \\12\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix} 8 \\6\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix} 2 \\-6\end{bmatrix}}\)
- \(\color{blue}{-2i+13j}\)
Related to This Article
More math articles
- The Ultimate ACT Math Formula Cheat Sheet
- 8th Grade WY-TOPP Math Worksheets: FREE & Printable
- Identify Lines of Symmetry
- 10 Most Common 3rd Grade NYSE Math Questions
- Ace the Math Subtests of the ASVAB Test
- What Is the Highest Score for SHSAT Test?
- Theoretical and Empirical Probability Distributions
- Top Math YouTube Channels for High School Students
- 8 Ways to Get Your Kids To Love Math
- How to Write a Point-slope Form Equation from a Graph
What people say about "Transformation Using Matrices"?
No one replied yet.