# How to Solve Rationalizing Imaginary Denominators? (+FREE Worksheet!)

The following step-by-step guide helps you learn how to rationalize imaginary denominators.

## Related Topics

**Step by step guide to rationalizing Imaginary Denominators**

- Step 1: Find the conjugate (it’s the denominator with different sign between the two terms.
- Step 2: Multiply the numerator and denominator by the conjugate.
- Step 3: Simplify if needed.

### Rationalizing Imaginary Denominators – Example 1:

Solve: \(\frac{2-3i}{6i}\)

**Solution:**

Multiply by the conjugate: \(\frac{-i}{-i}\):

\(\frac{2-3i}{6i}=\frac{(2-3i)(-i)}{6i(-i) }=\frac{-3-2i}{6}=-\frac{1}{2}-\frac{1}{3} i\)

**The Absolute Best Books to Ace Pre-Algebra to Algebra II**

### Rationalizing Imaginary Denominators – Example 2:

Solve: \(\frac{8i}{2 – 4i}\)

**Solution**:

Factor \(2 – 4i=2(1-2i)\), then: \(\frac{8i}{2(1-2i)}=\frac{4i}{(1-2i)}\)

Multiply by the conjugate \(\frac{1+2i}{1+2i}\):

\(\frac{4i}{1- 2i}= \frac{4i(1+2i)}{(1-2i)(1+2i)}=\frac{-8+4i}{5}=-\frac{8}{5}+\frac{4}{5} i\)

### Rationalizing Imaginary Denominators – Example 3:

Solve: \(\frac{5i}{2 – 3i}\)

**Solution**:

Multiply by the conjugate: \(\frac{2+ 3i}{2+ 3i}\):

\(\frac{5i}{2 – 3i}=\frac{5i(2+ 3i)}{(2-3i)(2+ 3i)}=\frac{-15+10i}{(2-3i)(2+ 3i)}\)

Use complex arithmetic rule: \((a+bi)(a-bi)=a^2+b^2\)

\( (2-3i)(2+ 3i)=-2^2+(-3)^2=4+9=13\) ,

Then: \(\frac{-15+10i}{(2-3i)(2+ 3i)}=\frac{-15+10i}{13}= \frac {-15}{13}+ \frac{10}{13} i\)

** The Best Book to Help You Ace**** Pre-Algebra**

### Rationalizing Imaginary Denominators – Example 4:

Solve: \(\frac{4-9i}{-6i}\)

**Solution**:

Apply fraction rule: \(\frac{4-9i}{-6i}=-\frac{4-9i}{6i}\)

Multiply by the conjugate: \(\frac{-i}{-i}\).

\( -\frac{4-9i}{6i}=-\frac{(4-9i)(-i)}{6i(-i)} =-\frac{-9-4i}{6}\)\(=\frac {3}{2} + \frac{2}{3}i\)

## Exercises for Solving Rationalizing Imaginary Denominators

### Simplify.

- \(\color{blue}{\frac{10 – 10i}{- 5i}} \\\ \)
- \(\color{blue}{\frac{5 – 8i}{- 10i}} \\\ \)
- \(\color{blue}{\frac{6 + 8i}{9i}} \\\ \)
- \(\color{blue}{\frac{8i}{-1+3i}} \\\ \)
- \(\color{blue}{\frac{5i}{- 2 – 6i}} \\\ \)
- \(\color{blue}{\frac{- 10 – 5i}{- 6 + 6i}} \\\ \)

### Download Rationalizing Imaginary Denominators Worksheet

- \(\color{blue}{2+ 2i} \\\ \)
- \(\color{blue}{\frac{4}{5}+\frac {1}{2}i} \\\ \)
- \(\color{blue}{\frac{8}{9}-\frac{2}{3}i} \\\ \)
- \(\color{blue}{\frac{12}{5}-\frac{4}{5}i}\\\ \)
- \(\color{blue}{\frac{-3}{4}-\frac{1}{4}i} \\\ \)
- \(\color{blue}{\frac{5}{12}+\frac{5}{4}i} \\\ \)

**The Greatest Books for Students** **to Ace the Algebra**

## Related to This Article

### More math articles

- How to Interpret Remainders of Division Two-digit Numbers By One-digit Numbers
- FREE 5th Grade PARCC Math Practice Test
- A Comprehensive Collection of FREE SAT Math Practice Tests
- 6th Grade FSA Math FREE Sample Practice Questions
- What does PSAT Stand for?
- How to Add and Subtract Integers: Word Problems
- CLEP College Mathematics Formulas
- 5th Grade RICAS Math Worksheets: FREE & Printable
- Top 10 Math Books for Grade 4: Empowering Young Minds to Discover Numbers
- A Comprehensive Look at Average vs Instantaneous Rate of Change

## What people say about "How to Solve Rationalizing Imaginary Denominators? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.