# How to Solve Rationalizing Imaginary Denominators? (+FREE Worksheet!)

The following step-by-step guide helps you learn how to rationalize imaginary denominators.

## Step by step guide to rationalizing Imaginary Denominators

• Step 1: Find the conjugate (it’s the denominator with different sign between the two terms.
• Step 2: Multiply the numerator and denominator by the conjugate.
• Step 3: Simplify if needed.

### Rationalizing Imaginary Denominators – Example 1:

Solve: $$\frac{2-3i}{6i}$$

Solution:

Multiply by the conjugate: $$\frac{-i}{-i}$$:
$$\frac{2-3i}{6i}=\frac{(2-3i)(-i)}{6i(-i) }=\frac{-3-2i}{6}=-\frac{1}{2}-\frac{1}{3} i$$

The Absolute Best Books to Ace Pre-Algebra to Algebra II

Original price was: $89.99.Current price is:$49.99.

### Rationalizing Imaginary Denominators – Example 2:

Solve: $$\frac{8i}{2 – 4i}$$

Solution:

Factor $$2 – 4i=2(1-2i)$$, then: $$\frac{8i}{2(1-2i)}=\frac{4i}{(1-2i)}$$
Multiply by the conjugate $$\frac{1+2i}{1+2i}$$:

$$\frac{4i}{1- 2i}= \frac{4i(1+2i)}{(1-2i)(1+2i)}=\frac{-8+4i}{5}=-\frac{8}{5}+\frac{4}{5} i$$

### Rationalizing Imaginary Denominators – Example 3:

Solve: $$\frac{5i}{2 – 3i}$$

Solution:

Multiply by the conjugate: $$\frac{2+ 3i}{2+ 3i}$$:

$$\frac{5i}{2 – 3i}=\frac{5i(2+ 3i)}{(2-3i)(2+ 3i)}=\frac{-15+10i}{(2-3i)(2+ 3i)}$$
Use complex arithmetic rule: $$(a+bi)(a-bi)=a^2+b^2$$
$$(2-3i)(2+ 3i)=-2^2+(-3)^2=4+9=13$$ ,

Then: $$\frac{-15+10i}{(2-3i)(2+ 3i)}=\frac{-15+10i}{13}= \frac {-15}{13}+ \frac{10}{13} i$$

Original price was: $24.99.Current price is:$14.99.
Satisfied 92 Students

### Rationalizing Imaginary Denominators – Example 4:

Solve: $$\frac{4-9i}{-6i}$$

Solution:

Apply fraction rule: $$\frac{4-9i}{-6i}=-\frac{4-9i}{6i}$$
Multiply by the conjugate: $$\frac{-i}{-i}$$.
$$-\frac{4-9i}{6i}=-\frac{(4-9i)(-i)}{6i(-i)} =-\frac{-9-4i}{6}$$$$=\frac {3}{2} + \frac{2}{3}i$$

## Exercises for Solving Rationalizing Imaginary Denominators

### Simplify.

• $$\color{blue}{\frac{10 – 10i}{- 5i}} \\\$$
• $$\color{blue}{\frac{5 – 8i}{- 10i}} \\\$$
• $$\color{blue}{\frac{6 + 8i}{9i}} \\\$$
• $$\color{blue}{\frac{8i}{-1+3i}} \\\$$
• $$\color{blue}{\frac{5i}{- 2 – 6i}} \\\$$
• $$\color{blue}{\frac{- 10 – 5i}{- 6 + 6i}} \\\$$

• $$\color{blue}{2+ 2i} \\\$$
• $$\color{blue}{\frac{4}{5}+\frac {1}{2}i} \\\$$
• $$\color{blue}{\frac{8}{9}-\frac{2}{3}i} \\\$$
• $$\color{blue}{\frac{12}{5}-\frac{4}{5}i}\\\$$
• $$\color{blue}{\frac{-3}{4}-\frac{1}{4}i} \\\$$
• $$\color{blue}{\frac{5}{12}+\frac{5}{4}i} \\\$$

The Greatest Books for Students to Ace the Algebra

### What people say about "How to Solve Rationalizing Imaginary Denominators? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

X
45% OFF

Limited time only!

Save Over 45%

SAVE $40 It was$89.99 now it is \$49.99