# Polynomial Identity

Polynomial identity is a mathematical fact that helps us to quickly solve expressions that contain large numbers and powers. In this guide, you will learn more about polynomial identity.

Polynomial identities are equations that hold true for all possible values of the variable. When solving problems with polynomial identities, identify the pattern to see if the form is simplified or factored form, and then apply the identity and solve.

**Related Topics**

**Step by step guide to** **polynomial identity**

Polynomial identity refers to an equation that is always true regardless of the values assigned to the variables. We use polynomial identities to expand or factorize polynomials.

We must learn polynomial identities in mathematics. Four important identities of the polynomial are listed below.

- \(\color{blue}{\left(a\:+\:b\right)^2=\:a^2+\:2ab\:+\:b^2}\)
- \(\color{blue}{\left(a\:−\:b\right)^2=\:a^2−\:2ab\:+\:b^2}\)
- \(\color{blue}{\left(a\:+\:b\right)\left(a\:−\:b\right)\:=\:a^2−\:b^2}\)
- \(\color{blue}{\left(x\:+\:a\right)\left(x\:+\:b\right)\:=\:x^2+\:x\left(a\:+\:b\right)\:+\:ab}\)

Apart from the simple polynomial identities mentioned above, there are other identities of polynomials. Here are some of the most common polynomial identities used:

- \(\color{blue}{\left(a\:+\:b\:+\:c\right)^2=\:a^2+\:b^2+\:c^2+\:2ab\:+\:2bc\:+\:2ca}\)
- \(\color{blue}{\left(a\:+\:b\right)^3=\:a^3+\:3a^2b\:+\:3ab^2+\:b^3}\)
- \(\color{blue}{\left(a\:−\:b\right)^3=\:a^3−\:3a^2b+\:3ab^2−\:b^3}\)
- \(\color{blue}{\left(a\right)^3+\:\left(b\right)^3=\:\left(a\:+\:b\right)\left(a^2−\:ab\:+\:b^2\right)}\)
- \(\color{blue}{\left(a\right)^3−\:\left(b\right)^3=\:\left(a\:−\:b\right)\left(a^2+\:ab\:+\:b^2\right)}\)
- \(\color{blue}{\left(a\right)^3+\:\left(b\right)^3+\:\left(c\right)^3−\:3abc\:=\:\left(a\:+\:b\:+\:c\right)\left(a^2+\:b^2+\:c^2−\:ab\:−\:bc−ca\right)}\)

### Polynomial Identity – Example 1:

Using polynomial identities, find \(\left(3x\:-2y\right)^2\).

**Solution:**

To solve polynomial, use this identity: \(\left(a\:−\:b\right)^2=\:a^2−\:2ab\:+\:b^2\)

Here, \(a=3x\) and \(b=2y\).

Then: \(\left(3x\:−\:2y\right)^2=\:\left(3x\right)^2−\:2\left(3x\right)\left(2y\right)+\left(2y\right)^2=\:9x^2−\:12xy\:+\:4y^2\)

Therefore, \(\left(3x\:−\:2y\right)^2=\:9x^2−\:12xy\:+\:4y^2\)

## Exercises for Polynomial Identity

### Simplify each expression.

- \(\color{blue}{\left(6x\:+\:5y\right)^2\:+\:\left(6x\:-\:5y\right)^2}\)
- \(\color{blue}{\left(4x^3-3\right)^2}\)
- \(\color{blue}{\left(2x^2+y^3\right)^2\left(3x^2+y^3\right)}\)
- \(\color{blue}{\left(5x-2y\right)^3}\)

- \(\color{blue}{72x^2+50y^2}\)
- \(\color{blue}{16x^6-24x^3+9}\)
- \(\color{blue}{12x^6+16x^4y^3+4x^2y^6+3y^6x^2+y^9}\)
- \(\color{blue}{\:125x^3-150x^2y+60xy^2-8y^3}\)

### More math articles

- Which Test Is Better for You; GED, TASC, or HiSET? Find Out Now
- FREE SIFT Math Practice Test
- How to Find the Volume of Cones and Pyramids? (+FREE Worksheet!)
- Best Mobile Laptop Stands for Presentation in Schools
- Top 10 5th Grade MAP Math Practice Questions
- Full-Length SSAT Upper Level Practice Test-Answers and Explanations
- Ratio, Proportion and Percentages Puzzle – Critical Thinking 7
- GED Math Practice Test Questions
- How to Graph Triangles and Quadrilaterals?
- 6th Grade AZMerit Math Worksheets: FREE & Printable

## What people say about "Polynomial Identity"?

No one replied yet.