How to Solve Natural Logarithms Problems? (+FREE Worksheet!)
In this blog post, you will learn more about Natural Logarithms and how to solve problems related to natural logarithms.

Related Topics
Step by step guide to solve Natural Logarithms
- A natural logarithm is a logarithm that has a special base of the mathematical constant \(e\), which is an irrational number approximately equal to \(2.71\).
- The natural logarithm of \(x\) is generally written as ln \(x\), or \(\log_{e}{x}\).
Natural Logarithms – Example 1:
Solve the equation for \(x\): \(e^x=3\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(3) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(3) \)
\(ln(e)=1\), then: \(x=ln(3) \)
Best Algebra Prep Resource
Natural Logarithms – Example 2:
Solve equation for \(x\): \(ln(2x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(2x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(2x-1)=ln(e)\), then: \(2x-1=e→x=\frac{e+1}{2}\)
Natural Logarithms – Example 3:
Solve the equation for \(x\): \(e^x=5\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(5) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(5) \)
\(ln(e)=1\), then: \(x=ln(5) \)
Natural Logarithms – Example 4:
Solve equation for \(x\): \(ln(5x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(5x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(5x-1)=ln(e)\), then: \(5x-1=e→x=\frac{e+1}{5}\)
Exercises to practice Natural Logarithms
The Perfect Book to Ace the College Algebra Course
Solve each equation for \(x\).
- \(\color{blue}{e^x=3}\)
- \(\color{blue}{e^x=4}\)
- \(\color{blue}{e^x=8}\)
- \(\color{blue}{ln x=6}\)
- \(\color{blue}{ln (ln x)=5}\)
- \(\color{blue}{e^x=9}\)
- \(\color{blue}{ln(2x+5)=4}\)
- \(\color{blue}{ln(2x-1)=1}\)

Answers
- \(\color{blue}{x=ln 3}\)
- \(\color{blue}{x=ln 4,x=2ln(2)}\)
- \(\color{blue}{x=ln 8,x=3ln(2)}\)
- \(\color{blue}{x=e^6}\)
- \(\color{blue}{x=e^{e^5}}\)
- \(\color{blue}{x=ln 9,x=2ln(3)}\)
- \(\color{blue}{x=\frac{e^4-5}{2}}\)
- \(\color{blue}{x=\frac{e+1}{2}}\)
The Best Books You Need to Ace Algebra
Related to This Article
More math articles
- Standard Form of a Circle
- How to Find Fractions of Time Units
- How to Find Inverses of 2×2 Matrices?
- Best Touchscreen Monitors for Teaching at Home
- How to Find Probability of an Event? (+FREE Worksheet!)
- How to Solve Logarithmic Equations: Definition and Properties
- 5th Grade TNReady Math Worksheets: FREE & Printable
- Best Calculators for Electrical Engineering Students In 2024
- Distributions in Line Plot
- Area of a Trapezoid
What people say about "How to Solve Natural Logarithms Problems? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.