How to Solve Natural Logarithms Problems? (+FREE Worksheet!)
In this blog post, you will learn more about Natural Logarithms and how to solve problems related to natural logarithms.
Related Topics
Step by step guide to solve Natural Logarithms
- A natural logarithm is a logarithm that has a special base of the mathematical constant \(e\), which is an irrational number approximately equal to \(2.71\).
- The natural logarithm of \(x\) is generally written as ln \(x\), or \(\log_{e}{x}\).
For education statistics and research, visit the National Center for Education Statistics.
Natural Logarithms – Example 1:
Solve the equation for \(x\): \(e^x=3\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(3) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(3) \)
\(ln(e)=1\), then: \(x=ln(3) \)
Best Algebra Prep Resource
Natural Logarithms – Example 2:
Solve equation for \(x\): \(ln(2x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(2x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(2x-1)=ln(e)\), then: \(2x-1=e→x=\frac{e+1}{2}\)
Natural Logarithms – Example 3:
Solve the equation for \(x\): \(e^x=5\)
Solution:
If \(f(x)=g(x)\),then: \(ln(f(x))=ln(g(x))→ln(e^x)=ln(5) \)
Use log rule: \(\log_{a}{x^b}=b \log_{a}{x}\), then: \(ln(e^x)=x ln(e)→xln(e)=ln(5) \)
\(ln(e)=1\), then: \(x=ln(5) \)
Natural Logarithms – Example 4:
Solve equation for \(x\): \(ln(5x-1)=1\)
Solution:
Use log rule: \(a=\log_{b}{b^a}\), then: \(1=ln(e^1 )=ln(e)→ln(5x-1)=ln(e)\)
When the logs have the same base: \(\log_{b}{f(x)}=\log_{b}{g(x)}\), then: \(f(x)=g(x)\)
then: \(ln(5x-1)=ln(e)\), then: \(5x-1=e→x=\frac{e+1}{5}\)
Exercises to practice Natural Logarithms
The Perfect Book to Ace the College Algebra Course
Solve each equation for \(x\).
- \(\color{blue}{e^x=3}\)
- \(\color{blue}{e^x=4}\)
- \(\color{blue}{e^x=8}\)
- \(\color{blue}{ln x=6}\)
- \(\color{blue}{ln (ln x)=5}\)
- \(\color{blue}{e^x=9}\)
- \(\color{blue}{ln(2x+5)=4}\)
- \(\color{blue}{ln(2x-1)=1}\)
Answers
- \(\color{blue}{x=ln 3}\)
- \(\color{blue}{x=ln 4,x=2ln(2)}\)
- \(\color{blue}{x=ln 8,x=3ln(2)}\)
- \(\color{blue}{x=e^6}\)
- \(\color{blue}{x=e^{e^5}}\)
- \(\color{blue}{x=ln 9,x=2ln(3)}\)
- \(\color{blue}{x=\frac{e^4-5}{2}}\)
- \(\color{blue}{x=\frac{e+1}{2}}\)
The Best Books You Need to Ace Algebra
Related to This Article
More math articles
- Intelligent Math Puzzle – Challenge 87
- The Math Storyteller: How to Unravel Word Problems of Two-step Equations
- Slope Fields Simplified: Understanding the Core of Differential Equations
- HiSET Math Formulas
- The Ultimate SSAT Lower Level Math Formula Cheat Sheet
- Using Decimals and Fractions to Solve One-Step Equations
- How to Use the Graphs of System of Equations for Classification
- How To Create a Distraction-Free Study Environment: 10 Tips
- How to Develop a Mindset for Math in 7 Steps?
- Top 6 Travel-Friendly Teaching Supplies for your Portable Classroom










What people say about "How to Solve Natural Logarithms Problems? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.