Learn how to multiply and divide complex numbers in few simple steps using the following step-by-step guide.

## Related Topics

## Step by step guide to Multiplying and Dividing Complex Numbers

**Multiplying complex numbers:**\(\color{blue}{(a+bi)+(c+di)=(ac-bd)+(ad+bc)i}\)**Dividing complex numbers:**\(\color{blue}{\frac{a+bi}{c+di}=\frac{a+bi}{c+di}×\frac{c-di}{c-di}=\frac{ac+bd}{c^2- d^2 }+\frac{bc+ad}{c^2- d^2}i }\)**Imaginary number rule:**\(\color{blue}{i^2=-1}\)

### Multiplying and Dividing Complex Numbers – Example 1:

Solve: \(\frac{4-2i}{2+i}=\)

**Solution:**

Use the rule for dividing complex numbers:

\(\frac{a+bi}{c+di}=\frac{a+bi}{c+di}×\frac{c-di}{c-di}=\frac{ac+bd}{c^2- d^2 }+\frac{bc+ad}{c^2- d^2 } i→\)

\(\frac{4-2i}{2+i}×\frac{2-i}{2-i}=\frac{(4×(2)+(-2)(1)}{2^2+ (1)^2 }+\frac{(-2×(2)-(4)(1)}{2^2+(1)^2 } i=\frac{6-8i}{5}=\frac{6}{5}-\frac{8}{5} i\)

### Multiplying and Dividing Complex Numbers – Example 2:

Solve: \((2-3i)(4-3i)\)

**Solution:**

Use the rule: \((a+bi)+(c+di)=(ac-bd)+(ad+bc)i\)

\((2.4-(-3)(-3))+(2(-3)+(-3).4)i=-1-18i\)

### Multiplying and Dividing Complex Numbers – Example 3:

Solve: \((2-8i)(3-5i)\)

**Solution:**

Use the rule: \((a+bi)+(c+di)=(ac-bd)+(ad+bc)i\)

\( (2.3-(-8)9-5))+(2(-5)+(-8).3)i=-34-34i\)

### Multiplying and Dividing Complex Numbers – Example 4:

Solve: \(\frac{2-3i}{2+i}=\)

**Solution:**

Use the rule for dividing complex numbers:

\(\frac{a+bi}{c+di}=\frac{a+bi}{c+di}×\frac{c-di}{c-di}=\frac{ac+bd}{c^2- d^2 }+\frac{bc+ad}{c^2- d^2 } i→\)

\(\frac{2-3i}{2+i}×\frac{2-i}{2-i}=\frac{(2×(2)+(-3)(1)}{2^2- (-1)^2 }+\frac{(-3×(2)+(-1)(2)}{2^2-(-1)^2 } i=\frac{1-8i}{5}=\frac{1}{5}-\frac{8}{5} i\)

## Exercises for Multiplying and Dividing Complex Numbers

### Simplify.

- \(\color{blue}{(4i)(– i)(2 – 5i)}\)
- \(\color{blue}{(2 – 8i)(3 – 5i)}\)
- \(\color{blue}{(–5 + 9i)(3 + 5i)}\)
- \(\color{blue}{(7 + 3i)(7+ 8i)}\)
- \(\color{blue}{(5 + 4i)^2}\)
- \(\color{blue}{2(3i) – (5i)(– 8 + 5i)}\)

### Download Multiplying and Dividing Complex Numbers Worksheet

- \(\color{blue}{8 – 20i }\)
- \(\color{blue}{–34 – 34i}\)
- \(\color{blue}{–60 + 2i}\)
- \(\color{blue}{25 + 77i}\)
- \(\color{blue}{9 + 40i}\)
- \(\color{blue}{25 + 46i}\)