How to Use Comparison test for Convergence
The Comparison Test is a fundamental method for determining the convergence or divergence of an infinite series. It involves comparing the terms of the given series with the terms of another series that has known convergence behavior. If the terms of the series are smaller than or equal to the terms of a convergent series, then the series converges. Similarly, if the terms are greater than or equal to a divergent series, then the series diverges. This test is particularly useful when direct evaluation of the series is difficult.

The Comparison Test is a method used to determine the convergence or divergence of an infinite series by comparing it with another series whose convergence properties are known. For a given series \(\sum a_n\), the test compares it to another series \(\sum b_n\), where \(b_n\) has simpler terms, making it easier to analyze.
The test works as follows:
- If \(0≤an≤bn\) for all \(n\) large enough and \(\sum b_n\) converges, then \(\sum a_n\) also converges.
- If \(an≥bn\) and \(\sum b_n\) diverges, then \(\sum a_n\) also diverges.
This test is helpful when it’s difficult to directly assess the convergence of the original series. By finding a suitable comparison series that converges or diverges, you can quickly conclude the behavior of the given series. The Comparison Test is particularly useful for series involving polynomial, exponential, or logarithmic functions.
Here are two examples demonstrating the Comparison Test:
1. Converging Series Example:
Series: \(\sum_{n=1}^{\infty} \frac{2}{n^3 + 1}\)
Comparison Series: \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)
- The terms \(\frac{2}{n^3 + 1}\) are smaller than \(\frac{2}{n^3}\) for all \(n \geq 1\), and we know that \(\sum \frac{1}{n^3}\) converges (since it’s a p-series with \(p = 3\)).
- By the Comparison Test, since the comparison series converges, the original series also converges.
2. Diverging Series Example:
Series: \(\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}\)
Comparison Series: \(\sum_{n=1}^{\infty} \frac{1}{n}\)
- The series \(\frac{1}{n \ln(n)}\) is larger than \(\frac{1}{n^2}\) for large \(n\), and we know that the harmonic series \(\sum \frac{1}{n}\) diverges.
- By the Comparison Test, since the comparison series diverges, the original series diverges as well.
Related to This Article
More math articles
- 7th Grade OSTP Math Worksheets: FREE & Printable
- Ease Your Integration: The Partial Fractions Technique
- Accuplacer Math Worksheets: FREE & Printable
- The Role of Math in Developing Strategic Thinking for iGaming
- A Comprehensive Collection of Free TABE Math Practice Tests
- How to Measures of Dispersion?
- How to Use Right-Triangle Trigonometry
- 10 Most Common CHSPE Math Questions
- 6th Grade PACE Math Worksheets: FREE & Printable
- Full-Length 7th Grade FSA Math Practice Test
What people say about "How to Use Comparison test for Convergence - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.