How to Solve Rational Exponents?
An exponential expression (also called fractional exponents) of the form \(a^m\) has a rational exponent if \(m\) is a rational number (as opposed to integers). Here, you learn more about solving rational exponents problems.
Rational exponents are exponents of numbers that are expressed as rational numbers, that is, in \(a^{\frac{p}{q}}\), \(a\) is the base, and \(\frac{p}{q}\) is the rational exponent where \(q ≠ 0\).
In rational exponents, the base must be a positive integer. Some examples of rational exponents are: \(2^{\frac{1}{3}}\), \(5^{\frac{5}{9}}\),\(10^{\frac{10}{3}}\).
Related Topics
A step-by-step guide to rational exponents
Rational exponents are defined as exponents that can be expressed in the form of \(\frac{p}{q}\), where \(q≠0\).
The general symbol for rational exponents is \(x^{\frac{m}{n}}\), where \(x\) is the base (positive number) and \(\frac{m}{n}\) is a rational power. Rational exponents can also be written as \(x^{\frac{m}{n}}\) \(=\sqrt[n]{m}\)
- \(\color{blue}{x^{\frac{1}{n}}=\sqrt[n]{x}}\)
- \(\color{blue}{x^{\frac{m}{n}}=\:\left(\sqrt[n]{x}\right)^m\:or\:\sqrt[n]{\left(x^m\right)}}\)
Rational exponents formulas
Let’s review some of the formulas for rational exponents used to solve various algebraic problems. The formula for integer exponents is also true for rational exponents.
- \(\color{blue}{a^{\frac{m}{n}}\times a^{\frac{p}{q}}=a^{\left(\frac{m}{n}+\frac{p}{q}\right)}}\)
- \(\color{blue}{a^{\frac{m}{n}}\div a^{\frac{p}{q}}=a^{\left(\frac{m}{n}-\frac{p}{q}\right)}}\)
- \(\color{blue}{a^{\frac{m}{n}}\times b^{\frac{m}{n}}=\left(ab\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{\frac{m}{n}}\div b^{\frac{m}{n}}=\left(a\div b\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{-\frac{m}{n}}=\left(\frac{1}{a}\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{\frac{0}{n}}=a^0=1}\)
- \(\color{blue}{\left(a^{\frac{m}{n}}\right)^{\frac{p}{q}}=a^{\frac{m}{n}\times \frac{p}{q}}}\)
- \(\color{blue}{x^{\frac{m}{n}}=y⇔x=y^{\frac{n}{m}}}\)
Rational Exponents – Example 1:
solve. \(8^{\frac{1}{2}}\times 8^{\frac{1}{2}}\)
Use this formula to solve rational exponents: \(\color{blue}{a^{\frac{m}{n}}\times a^{\frac{p}{q}}=a^{\left(\frac{m}{n}+\frac{p}{q}\right)}}\)
\(8^{\frac{1}{2}}\times 8^{\frac{1}{2}}\) \(=8^{\left(\frac{1}{2}+\frac{1}{2}\right)}\)
\(=8^{1}=8\)
Rational Exponents – Example 2:
Solve. \(2^{\frac{1}{4}}\times 7^{\frac{1}{4}}\)
Use this formula to solve rational exponents: \(\color{blue}{a^{\frac{m}{n}}\times b^{\frac{m}{n}}=\left(ab\right)^{\frac{m}{n}}}\)
\(2^{\frac{1}{4}}\times 7^{\frac{1}{4}}\) \(=(2\times7)^{\frac{1}{4}}\)
\(=14^{\frac{1}{4}}\)
Exercise for Rational Exponents
Evaluate the following rational exponents.
- \(\color{blue}{25^{\frac{1}{2}}}\)
- \(\color{blue}{81^{\frac{5}{4}}}\)
- \(\color{blue}{(2x^{\frac{2}{3}})(7x^{\frac{5}{4}})}\)
- \(\color{blue}{8^{\frac{1}{2}}\div 8^{\frac{1}{6}}}\)
- \(\color{blue}{(\frac{16}{9})^{-\frac{1}{2}}}\)
- \(\color{blue}{\left(8x\right)^{\frac{1}{3}}\left(14x^{\frac{6}{5}}\right)}\)

- \(\color{blue}{5}\)
- \(\color{blue}{243}\)
- \(\color{blue}{14x^{\frac{23}{12}}}\)
- \(\color{blue}{2}\)
- \(\color{blue}{\frac{3}{4}}\)
- \(\color{blue}{28x^{\frac{23}{15}}}\)
Related to This Article
More math articles
- The Grocery Store Challenge: How to Use Unit Rates to Solve Word Problems
- How to Identify One-by-One Functions from the Graph
- Bеѕt Strategies to pass the Aссuрlасеr Test
- Top 10 Tips You MUST Know to Retake the ASVAB Math
- HSPT Math Formulas
- How to Use Number Lines to Add and Subtract Fractions with Like Denominators
- How to Multiply and Divide Rational Numbers
- How to Solve the Frequency Distribution Table?
- A Complete Exploration of Integration by Parts
- Unlock the Future: 10 Unexpected Advantages of Online Learning in 2024


















What people say about "How to Solve Rational Exponents? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.