How to Solve Rational Exponents?
An exponential expression (also called fractional exponents) of the form \(a^m\) has a rational exponent if \(m\) is a rational number (as opposed to integers). Here, you learn more about solving rational exponents problems.

Rational exponents are exponents of numbers that are expressed as rational numbers, that is, in \(a^{\frac{p}{q}}\), \(a\) is the base, and \(\frac{p}{q}\) is the rational exponent where \(q ≠ 0\). In rational exponents, the base must be a positive integer. Some examples of rational exponents are: \(2^{\frac{1}{3}}\), \(5^{\frac{5}{9}}\),\(10^{\frac{10}{3}}\).
Related Topics
Step by step guide to rational exponents
Rational exponents are defined as exponents that can be expressed in the form of \(\frac{p}{q}\), where \(q≠0\). The general symbol for rational exponents is \(x^{\frac{m}{n}}\), where \(x\) is the base (positive number) and \(\frac{m}{n}\) is a rational power. Rational exponents can also be written as \(x^{\frac{m}{n}}\) \(=\sqrt[n]{m}\)

Rational exponents formulas
Let’s review some of the formulas for rational exponents used to solve various algebraic problems. The formula for integer exponents is also true for rational exponents.
- \(\color{blue}{a^{\frac{m}{n}}\times a^{\frac{p}{q}}=a^{\left(\frac{m}{n}+\frac{p}{q}\right)}}\)
- \(\color{blue}{a^{\frac{m}{n}}\div a^{\frac{p}{q}}=a^{\left(\frac{m}{n}-\frac{p}{q}\right)}}\)
- \(\color{blue}{a^{\frac{m}{n}}\times b^{\frac{m}{n}}=\left(ab\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{\frac{m}{n}}\div b^{\frac{m}{n}}=\left(a\div b\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{-\frac{m}{n}}=\left(\frac{1}{a}\right)^{\frac{m}{n}}}\)
- \(\color{blue}{a^{\frac{0}{n}}=a^0=1}\)
- \(\color{blue}{\left(a^{\frac{m}{n}}\right)^{\frac{p}{q}}=a^{\frac{m}{n}\times \frac{p}{q}}}\)
- \(\color{blue}{x^{\frac{m}{n}}=y⇔x=y^{\frac{n}{m}}}\)
Rational Exponents – Example 1:
solve. \(8^{\frac{1}{2}}\times 8^{\frac{1}{2}}\)
Use this formula to solve rational exponents: \(\color{blue}{a^{\frac{m}{n}}\times a^{\frac{p}{q}}=a^{\left(\frac{m}{n}+\frac{p}{q}\right)}}\)
\(8^{\frac{1}{2}}\times 8^{\frac{1}{2}}\) \(=8^{\left(\frac{1}{2}+\frac{1}{2}\right)}\)
\(=8^{1}=8\)
Rational Exponents – Example 2:
Solve. \(2^{\frac{1}{4}}\times 7^{\frac{1}{4}}\)
Use this formula to solve rational exponents: \(\color{blue}{a^{\frac{m}{n}}\times b^{\frac{m}{n}}=\left(ab\right)^{\frac{m}{n}}}\)
\(2^{\frac{1}{4}}\times 7^{\frac{1}{4}}\) \(=(2\times7)^{\frac{1}{4}}\)
\(=14^{\frac{1}{4}}\)
Exercise for Rational Exponents
Evaluate the following rational exponents.
- \(\color{blue}{25^{\frac{1}{2}}}\)
- \(\color{blue}{81^{\frac{5}{4}}}\)
- \(\color{blue}{(2x^{\frac{2}{3}})(7x^{\frac{5}{4}})}\)
- \(\color{blue}{8^{\frac{1}{2}}\div 8^{\frac{1}{6}}}\)
- \(\color{blue}{(\frac{16}{9})^{-\frac{1}{2}}}\)
- \(\color{blue}{\left(8x\right)^{\frac{1}{3}}\left(14x^{\frac{6}{5}}\right)}\)

- \(\color{blue}{5}\)
- \(\color{blue}{243}\)
- \(\color{blue}{14x^{\frac{23}{12}}}\)
- \(\color{blue}{2}\)
- \(\color{blue}{\frac{3}{4}}\)
- \(\color{blue}{28x^{\frac{23}{15}}}\)
More math articles
- HSPT Math-Test Day Tips
- 6th Grade K-PREP Math Worksheets: FREE & Printable
- FREE SSAT Upper Level Math Practice Test
- CBEST Math Formulas
- 5 Best Accuplacer Math Study Guides
- 3rd Grade SBAC Math Practice Test Questions
- 3rd Grade KAP Math Worksheets: FREE & Printable
- How to Solve Arithmetic Sequences? (+FREE Worksheet!)
- How to Solve Pythagorean Theorem Problems? (+FREE Worksheet!)
- PSAT / NMSQT Math-Test Day Tips
What people say about "How to Solve Rational Exponents?"?
No one replied yet.