How to Solve Inverse Trigonometric Functions?
Inverse trigonometric functions are defined as the inverse functions of the basic trigonometric functions. Learn how to solve inverse trigonometric functions by the following step-by-step guide.

Inverse trigonometric functions are also known as anti-trigonometric functions, arcus functions, or cyclometric functions. Inverse trigonometric functions are the inverse functions of the basic trigonometric functions sine, cosine, tangent, cotangent, secant, and cosecant functions.
Related Topics
- How to Evaluate Trigonometric Function
- How to Solve Angles and Angle Measure
- How to Solve Coterminal Angles and Reference Angles
A step-by-step guide to inverse trigonometric functions
The basic inverse trigonometric formulas are as follows:
- \(\color{blue}{sin^{-1}(-x)=-sin^{-1}x, x∈[-1,1]}\)
- \(\color{blue}{tan^{-1}(-x)=-tan^{-1}x, x∈ R}\)
- \(\color{blue}{cosec^{-1}(-x)=-cosec^{-1}x, x∈ R-(-1,1)}\)
- \(\color{blue}{cos^{-1}(-x)=π-cos^{-1}x, x∈[-1,1]}\)
- \(\color{blue}{sec^{-1}(-x)=π-sec^{-1}x, x∈ R -(-1,1)}\)
- \(\color{blue}{cot^{-1}(-x)=π-cot^{-1}x, x∈ R}\)
Inverse trigonometric function formulas for reciprocal functions
The inverse trigonometric function for reciprocal values x converts the given inverse trigonometric function to its reciprocal function. This follows from the trigonometric functions where sin and cosecant are reciprocal to each other, tangent and cotangent are reciprocal to each other, and cos and secant are reciprocal to each other.
The inverse triangular formula of inverse sine, inverse cosine, and inverse tangent can also be expressed as follows.
- \(\color{blue}{sin^{-1}(x)=cosec^{-1}\frac{1}{x}, x∈ R -(-1,1)}\)
- \(\color{blue}{cos^{-1}(x)=sec^{-1}\frac{1}{x}, x∈ R -(-1,1)}\)
- \(\color{blue}{tan^{-1}(x)=cot^{-1}\frac{1}{x}, x >0}\)
- \(\color{blue}{tan^{-1}(x)=-π+cot^{-1}x, x<0}\)
Inverse trigonometric function formulas for complementary functions
The complementary functions, sine-cosine, tangent-cotangent, and secant-cosecant can be interpreted as:
- \(\color{blue}{sin^{-1}(x)+cos^{-1}x=\frac{\pi}{2}, x ∈ [-1,1]}\)
- \(\color{blue}{tan^{-1}(x)+cot^{-1}x=\frac{\pi}{2}, x ∈ R}\)
- \(\color{blue}{sec^{-1}(x)+cosec^{-1}x=\frac{\pi}{2}, x ∈ R -[-1,1]}\)
Sum and difference of inverse trigonometric function formulas
The sum and difference of two inverse trigonometric functions can be combined to form an inverse function, according to the following set of formulas:
- \(\color{blue}{sin^{-1}x+sin^{-1}y=sin^{-1}(x.\sqrt{\left(1-y^2\right)}+y\sqrt{\left(1-x^2\right)})}\)
- \(\color{blue}{sin^{-1}x-sin^{-1}y=sin^{-1}(x.\sqrt{\left(1-y^2\right)}-y\sqrt{\left(1-x^2\right)})}\)
- \(\color{blue}{cos^{-1}x+cos^{-1}y=cos^{-1}\left(xy-\sqrt{\left(1-x^2\right)}.\sqrt{\left(1-y^2\right)}\right)}\)
- \(\color{blue}{cos^{-1}x-cos^{-1}y=cos^{-1}\left(xy+\sqrt{\left(1-x^2\right)}.\sqrt{\left(1-y^2\right)}\right)}\)
- \(\color{blue}{tan^{-1}x+tan^{-1}y=tan^{-1}\frac{(x+y)}{(1-xy)}, \:if\: xy<1}\)
- \(\color{blue}{tan^{-1}x+tan^{-1}y=tan^{-1}\frac{(x-y)}{(1+xy)}, \:if\: xy> -1}\)
Double of inverse trigonometric function formulas
Twice an inverse trigonometric function can be solved to form a single trigonometric function according to the following set of formulas:
- \(\color{blue}{2sin^{-1}x=sin^{-1}\left(2x.\sqrt{\left(1-x^2\right)}\right)}\)
- \(\color{blue}{2cos^{-1}x=cos^{-1}(2x^2-1)}\)
- \(\color{blue}{2tan^-1x=tan^{-1}(\frac{2x}{1}-x^2)}\)
Inverse Trigonometric Functions – Example 1:
Find the value of \(sin^{-1}(-1)\).
Solution:
Use this formula: \(\color{blue}{sin^{-1}(-x)=-sin^{-1}x, x∈[-1,1]}\)
\(sin^{-1}(-1)=-sin^{-1}(1)\)
\(-sin^{-1} (1)=\frac{\pi }{2}\)
Exercises for Inverse Trigonometric Functions
Evaluate each of the following.
- \(\color{blue}{tan^{-1}(\sqrt{3})-cot^{-1}(-\sqrt{3})}\)
- \(\color{blue}{sin(cot^{-1}x)}\)
- \(\color{blue}{tan^{-1}(1)+cos^{-1}(-\frac{1}{2})+sin^{-1}(-\frac{1}{2})}\)
- \(\color{blue}{cos^{-1}(cos(-\frac{\pi}{3}))}\)
- \(\color{blue}{sin\left(cos^{-1}\frac{3}{5}\right)}\)

- \(\color{blue}{-\frac{\pi}{2}}\)
- \(\color{blue}{\frac{\sqrt{1+x^2}}{1+x^2}}\)
- \(\color{blue}{\frac{3\pi}{4}}\)
- \(\color{blue}{\frac{\pi}{3}}\)
- \(\color{blue}{\frac{4}{5}}\)
Related to This Article
More math articles
- Bridging the Gap: From Basic Math to Algebra with “Pre-Algebra for Beginners”
- SSAT Upper Level Math Practice Test Questions
- Completing the Puzzle: How to Finishing Equations when Multiplying Fractions by Whole Numbers Using Models
- How to Add and Subtract Matrices? (+FREE Worksheet!)
- What are the four Branches of Mathematics?
- 5th Grade PSSA Math FREE Sample Practice Questions
- Best Middle School Math Supplies
- The Ultimate ASTB Math Course (+FREE Worksheets & Tests)
- Decoding the Depths: A Dive into the Composite Floor Function
- Full-Length 6th Grade SBAC Math Practice Test-Answers and Explanations
What people say about "How to Solve Inverse Trigonometric Functions? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.