How to Solve an Absolute Value Inequality?
The absolute value of inequalities follows the same rules as the absolute value of numbers.

The absolute value of \(a\) is written as \(|a|\). For any real numbers \(a\) and \(b\), if \(|a| < b\), then \(a < b\) and \(a > -b\) and if \(|a| > b\), then \(a > b\) and \(a < -b\).
Related Topics
A step-by-step guide to solving an absolute value inequality
To solve an absolute value inequality, follow the below steps:
- Isolate the absolute value expression.
- Write the equivalent compound inequality.
- Solve the compound inequality.
Solving Absolute Value Inequalities – Example 1:
Solve \(|x-5|<3\).
Solution:
To solve this inequality, break it into a compound inequality: \(x-5<3\) and \(x-5>-3\)
So, \(-3<x-5<3\).
Add \(5\) to each expression: \(-3+5<x-5+5<3+5 → 2<x<8\).
Solving Absolute Value Inequalities – Example 2:
Solve \(|x+4| ≥ 9\).
Solution:
Split into two inequalities: \(x+4 ≥ 9\) or \(x+4 ≤ -9\).
Subtract \(4\) from each side of each inequality:
\(x+4-4 ≥ 9-4\) → \(x ≥ 5\)
or
\(x+4-4 ≤ -9-4\) → \(x ≤ -13\)
Exercises for Absolute Value Inequalities
Solve each absolute value inequality.
- \(\color{blue}{|4x|<12}\)
- \(\color{blue}{|x-5|>9}\)
- \(\color{blue}{|3x-7|<8}\)
- \(\color{blue}{5|x-2|>20}\)

- \(\color{blue}{-3<x<3}\)
- \(\color{blue}{x< -4 \:or\: x>14}\)
- \(\color{blue}{-\frac{1}{3}<x<5}\)
- \(\color{blue}{x<-2 \:or\: x>6}\)
Related to This Article
More math articles
- HL Congruence: The Special Case of Right Triangles
- 5th Grade STAAR Math Practice Test Questions
- Accuplacer Math Formulas
- The Centroid and Its Role in Triangles
- How to Use Properties of Numbers to Write Equivalent Expressions?
- How to Verify Inverse Functions by Composition?
- FREE 8th Grade SBAC Math Practice Test
- The Best Calculators for School 2024
- The Ultimate 6th Grade OAA Math Course (+FREE Worksheets)
- Full-Length PSAT 10 Math Practice Test
What people say about "How to Solve an Absolute Value Inequality? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.