How to Solve an Absolute Value Inequality?
The absolute value of inequalities follows the same rules as the absolute value of numbers.

The absolute value of \(a\) is written as \(|a|\). For any real numbers \(a\) and \(b\), if \(|a| < b\), then \(a < b\) and \(a > -b\) and if \(|a| > b\), then \(a > b\) and \(a < -b\).
Related Topics
A step-by-step guide to solving an absolute value inequality
To solve an absolute value inequality, follow the below steps:
- Isolate the absolute value expression.
- Write the equivalent compound inequality.
- Solve the compound inequality.
Solving Absolute Value Inequalities – Example 1:
Solve \(|x-5|<3\).
Solution:
To solve this inequality, break it into a compound inequality: \(x-5<3\) and \(x-5>-3\)
So, \(-3<x-5<3\).
Add \(5\) to each expression: \(-3+5<x-5+5<3+5 → 2<x<8\).
Solving Absolute Value Inequalities – Example 2:
Solve \(|x+4| ≥ 9\).
Solution:
Split into two inequalities: \(x+4 ≥ 9\) or \(x+4 ≤ -9\).
Subtract \(4\) from each side of each inequality:
\(x+4-4 ≥ 9-4\) → \(x ≥ 5\)
or
\(x+4-4 ≤ -9-4\) → \(x ≤ -13\)
Exercises for Absolute Value Inequalities
Solve each absolute value inequality.
- \(\color{blue}{|4x|<12}\)
- \(\color{blue}{|x-5|>9}\)
- \(\color{blue}{|3x-7|<8}\)
- \(\color{blue}{5|x-2|>20}\)

- \(\color{blue}{-3<x<3}\)
- \(\color{blue}{x< -4 \:or\: x>14}\)
- \(\color{blue}{-\frac{1}{3}<x<5}\)
- \(\color{blue}{x<-2 \:or\: x>6}\)
Related to This Article
More math articles
- How to Apply Trigonometry: Practical Uses and Insights into Engineering and Astronomy
- 10 Most Common 4th Grade PSSA Math Questions
- Hоw tо Choose thе Right Calculator fоr High Sсhооl
- Gain Access to the Answers: Explore the Solution Manual for “CHSPE Math for Beginners”
- How to Do Operations with Polynomials? (+FREE Worksheet!)
- 10 Most Common 4th Grade PARCC Math Questions
- Finding Derivatives Made Easy! Product Rule of Differentiation
- Using Number Lines to Add Two Negative Integers
- How to Define Product-to-Sum and Sum-to-Product Formulas
- The Ultimate GRE Math Course: The Only Course You Need for Success
What people say about "How to Solve an Absolute Value Inequality? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.