How to Solve an Absolute Value Inequality?
The absolute value of inequalities follows the same rules as the absolute value of numbers.

The absolute value of \(a\) is written as \(|a|\). For any real numbers \(a\) and \(b\), if \(|a| < b\), then \(a < b\) and \(a > -b\) and if \(|a| > b\), then \(a > b\) and \(a < -b\).
Related Topics
A step-by-step guide to solving an absolute value inequality
To solve an absolute value inequality, follow the below steps:
- Isolate the absolute value expression.
- Write the equivalent compound inequality.
- Solve the compound inequality.
Solving Absolute Value Inequalities – Example 1:
Solve \(|x-5|<3\).
Solution:
To solve this inequality, break it into a compound inequality: \(x-5<3\) and \(x-5>-3\)
So, \(-3<x-5<3\).
Add \(5\) to each expression: \(-3+5<x-5+5<3+5 → 2<x<8\).
Solving Absolute Value Inequalities – Example 2:
Solve \(|x+4| ≥ 9\).
Solution:
Split into two inequalities: \(x+4 ≥ 9\) or \(x+4 ≤ -9\).
Subtract \(4\) from each side of each inequality:
\(x+4-4 ≥ 9-4\) → \(x ≥ 5\)
or
\(x+4-4 ≤ -9-4\) → \(x ≤ -13\)
Exercises for Absolute Value Inequalities
Solve each absolute value inequality.
- \(\color{blue}{|4x|<12}\)
- \(\color{blue}{|x-5|>9}\)
- \(\color{blue}{|3x-7|<8}\)
- \(\color{blue}{5|x-2|>20}\)

- \(\color{blue}{-3<x<3}\)
- \(\color{blue}{x< -4 \:or\: x>14}\)
- \(\color{blue}{-\frac{1}{3}<x<5}\)
- \(\color{blue}{x<-2 \:or\: x>6}\)
Related to This Article
More math articles
- Intelligent Math Puzzle – Challenge 81
- How to Find Magnitude of Vectors?
- 4th Grade ACT Aspire Math Practice Test Questions
- Algebra 1 Worksheets: FREE & Printable
- How to Write Two-variable Inequalities Word Problems?
- How to Graph Single–Variable Inequalities? (+FREE Worksheet!)
- Praxis Core Math Practice Test Questions
- Best Free Apps That Solve Math Problems for You
- Top Math Websites for Virtual Learning
- What Are the Applications of the Law of Sines?
What people say about "How to Solve an Absolute Value Inequality? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.