# How to Represent Systems of Linear Equations Using Matrices?

A system of linear equations can be represented as a matrix. In this step-by-step guide, you learn how to represent systems of linear equations using matrices.

A matrix equation consists of three matrices: the first matrix shows the values of the coefficients of the variables, the second lists the symbols of the variables themselves, and following an equal sign the third matrix represents the constant values to the right of the equal signs in the equations.

## Related Topics

## Step-by-step guide to representing systems of linear equations using matrices

A system of linear equations can be represented as a matrix using a **coefficient matrix**, a **variable matrix**, and a **constant matrix**.

Consider the system:

\(\begin{cases}2x+5y=11 \\ 4x-2y=-26\end{cases}\)

The **coefficient matrix** can be formed by aligning the coefficients of the variables of each equation in a row. Make sure that each equation is written in the standard form with a constant expression on the right. Then the coefficient matrix for the above system:

\(\begin{bmatrix}2 & 5 \\4 & -2 \end{bmatrix}\)

The variables we have are \(x\) and \(y\). So we can write the **variable matrix** \(\begin{bmatrix}x \\y \end{bmatrix}\).

To the right of the equation, we have the constant terms of equations, \(11\) and \(-26\). The two numbers correspond to the first and second equations, respectively, and therefore take the place of the first and second rows in the **constant matrix**. So, the matrix becomes \(\begin{bmatrix}11\\-26 \end{bmatrix}\).

Now, the system can be displayed as:

\(\begin{bmatrix}2 & 5 \\4 & -2 \end{bmatrix}\) \(+\) \(\begin{bmatrix}x \\y \end{bmatrix}\)\(=\) \(\begin{bmatrix}11\\-26 \end{bmatrix}\)

Using matrix multiplication we can see that the matrix representation is equivalent to the system of equations.

\(\begin{bmatrix}2 & 5 \\4 & -2 \end{bmatrix}\) \(\begin{bmatrix}x \\y \end{bmatrix}\) \(=\begin{bmatrix} 2(x) + 5(y) \\ 4(x) -2(y)\end{bmatrix}\) \(=\begin{bmatrix} 2x + 5y \\ 4x -2y\end{bmatrix}\)

That is, \(\begin{bmatrix} 2x + 5y \\ 4x -2y\end{bmatrix}\)\(=\) \(\begin{bmatrix}11\\-26 \end{bmatrix}\)

Similarly, for a system of three equations in three variables:

\(\begin{cases}a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{cases}\)

The matrix representation would be:

\(\begin{bmatrix}a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{bmatrix}\) \(\begin{bmatrix}x \\ y \\ z \end{bmatrix}\) \(=\) \(\begin{bmatrix}d_1 \\ d_2 \\ d_3 \end{bmatrix}\)

We can generalize the result to \(n\) variables.

### Representing Systems of Linear Equations Using Matrices – Example 1:

Represent the system of linear equations as a matrix. \(\begin{cases}3x-4y= -20 \\ -x+2y=10\end{cases}\)

**solution:**

\(\begin{bmatrix} 3 & -4 \\ -1 & 2\end{bmatrix}\) \(\begin{bmatrix}x\\y \end{bmatrix}\) \(=\) \(\begin{bmatrix}-20\\10 \end{bmatrix}\)

### Representing Systems of Linear Equations Using Matrices – Example 2:

What linear system of equations does the matrix represent? \(\begin{bmatrix} 5& 2 \\ 0 & 1\end{bmatrix}\) \(\begin{bmatrix}x\\y \end{bmatrix}\) \(=\) \(\begin{bmatrix}7\\9 \end{bmatrix}\)

**solution:**

\(\begin{bmatrix} 5& 2 \\ 0 & 1\end{bmatrix}\) \(\begin{bmatrix}x\\y \end{bmatrix}\) \(=\) \(\begin{bmatrix} 5 (x) + 2(y) \\ 0(x) +1(y)\end{bmatrix}\) \(=\begin{bmatrix} 5x+2y \\ 1y\end{bmatrix}\)

\(\begin{cases}5x+2y= 7 \\ y=9\end{cases}\)

## Exercises for Representing Systems of Linear Equations Using Matrices

### Represent the system of linear equations as a matrix.

- \(\color{blue}{\begin{cases}x+y+z=6 \\ 2y+5z=-4 \\ 2x+5y-z=27 \end{cases}}\)
- \(\color{blue}{\begin{cases}x+2y-4z=5 \\ 2x+y-6z=8 \\ 4x-y-12z=13 \end{cases}}\)
- \(\color{blue}{\begin{cases}2v+x+2y+z=4 \\ v+5x-y-3z=1 \\ 4v-2x+6y-z=-16\\ 2v+6x-9z=10\end{cases}}\)

- \(\color{blue}{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 5 \\ 2 & 5 & -1 \end{bmatrix}\begin{bmatrix}x\\y \\z \end{bmatrix}=\begin{bmatrix}6\\-4\\ 27 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix} 1 & 2 & -4 \\ 2 & 1 & -6 \\ 4 & -1 & -12 \end{bmatrix}\begin{bmatrix}x\\y \\z \end{bmatrix}=\begin{bmatrix}5\\8\\ 13 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 5 & -1 & -3 \\ 4 & -2 & 6 & -1\\ 2 & 6 & 0 & -9 \end{bmatrix}\begin{bmatrix}v\\x\\y \\z \end{bmatrix}=\begin{bmatrix}4\\1\\ -16\\10 \end{bmatrix}}\)

### More math articles

- How to Write the Standard Form of Linear Equations?
- FREE 6th Grade MAP Math Practice Test
- 3rd Grade CMAS Math Worksheets: FREE & Printable
- How Is the CLEP College Algebra Test Scored?
- Top 10 SAT Math Practice Questions
- Top 10 Tips to Retake GED Math Test
- Different Question Types on the ACT Math Test
- How is the PSAT/NMSQT Test Scored?
- 10 Most Common 4th Grade PSSA Math Questions
- Top 10 Tips to ACE the CBEST Math Test

## What people say about "How to Represent Systems of Linear Equations Using Matrices?"?

No one replied yet.